Skip to main content

Molecular Ecology of Methanotrophs

  • Conference paper
Microbiology of Atmospheric Trace Gases

Part of the book series: NATO ASI Series ((ASII,volume 39))

Abstract

Methane oxidizing bacteria (methanotrophs) are unique in growing with methane as their sole source of carbon and energy. They do not grow on multi-carbon compounds, but some can also utilize methanol as a growth substrate. These unique organisms appear to be ubiquitous in the natural environment and have been isolated from a wide variety of soils, sediments and freshwater samples (Whittenbury et al. 1970; Bowman et al. 1993) . There are also marine representatives (reviewed in Murrell and Holmes, 1995). They are all strictly aerobic, gram negative bacteria that grow on a minimal medium and methane and can be classified into two groups on the basis of their intracytoplasmic membranes, pathways of formaldehyde assimilation and 16S rRNA sequence. The five genera Methylomonas, Methylobacter, Methylococcus, Methylocystis and Methylosinus originally proposed by Whittenbury et al. (1970) have largely remained unaltered (Bowman et al. 1993). Type I methanotrophs Methylobacter and Methylomonas are related to bacteria in the γ-subdivision of the Proteobacteria, contain bundles of intracytoplasmic membranes and utilize the ribulose monophosphate (RuMP) pathway for formaldehyde assimilation into biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez-Cohen L., McCarty P.L., Boulygina E., Brusseau G., Hanson R.S. (1992) Cometabolic biotransformation of trichloroethylene and chloroform by a bacterial consortiurn grown with methane Appl Environ Microbiol 58: 1886–1893

    PubMed  CAS  Google Scholar 

  • Anthony C. (1982) The Biochemistry of Methylotrophs. Academic Press, London

    Google Scholar 

  • Anthony C. (1986) Bacterial oxidation of methane and methanol Adv Micro Physiol 27:113–210

    Article  CAS  Google Scholar 

  • Barta T.M. and Hanson R.S. (1993) Genetics of methane and methanol oxidation in gram negative methylotrophic bacteria Anton van Leeuw 64:109–120.

    Article  Google Scholar 

  • Boulygina E.S., Churnakov K.M., Netrusov A.I. (1993) Systematics of gram-negative methylotrophic bacteria based on 5S rRNA sequences. In Murrell J.C., Kelly D.P. (eds) Microbial Growth on C1 Compounds, pp 275–284. Andover: Intercept Ltd.

    Google Scholar 

  • Bowrnan J.P., Sly I., Nicholas P.D., Hayward A.C. (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus species and a proposalthat the family Methylococcaceae includes only group I methanotrophs. Int J Syst Bacteriol 43:735–753

    Article  Google Scholar 

  • Bowrnan J.P. (1992) The systematics of methane-utilizing bacteria. PhD Thesis Uni versity of Queensland, Brisbane, Australia

    Google Scholar 

  • Bratina B.J., Brusseau G.A., Hanson R.S. (1992) Use of 16S rRNA analysis to investigate phylogeny of methylotrophic bacteria. Int J System Bacteriol 42: 645–648

    Article  CAS  Google Scholar 

  • Brusseau G.A., Bulygina E.S., Hanson R.S. (1994) Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria. Appl Environ Microbiol 60 626–636

    PubMed  CAS  Google Scholar 

  • Chan S.I., Nguyen H-HT., Shiemke A.K., Lidstrom M.E. (1993) Biochemical and biophysical studies towards characterization of the membrane-associated methane monooxygenase In: Murrell J.C., Kelly D.P. (Eds) Microbial Growth on C1 Compounds (pp 93–107) Intercept Press, Andover, UK

    Google Scholar 

  • Cicerone R.J., Oremland R.S. (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles 2:299–327

    Article  CAS  Google Scholar 

  • Dalton H. (1992) Methane oxida tion by methanotrophs, physiological and mechanistic implications. In: Murrell J.C., Dalton H. (Eds) Methane and Methanol Utilizers pp 85–114 Plenum, New York

    Google Scholar 

  • Dalton H., Wilkins P.C. & Jiang Y. (1993) Structure and mechanism of action of the hydroxylase of soluble methane monooxygenase. In: Murrell J.C., Kelly D.P. (Eds) Microbial Growth on C1 Compounds (pp 65–80) Intercept Press, Andover, UK

    Google Scholar 

  • Giovannoni S.J. (1991) The polymerase chain reaction. In Stackebrandt E., Goodfellow M. (eds) Nucleic Acid Techniques in Bacterial Systematics, pp 177–203. Chichester: John Wiley and Sons

    Google Scholar 

  • Green P.N. (1992) Taxonomy of methylotrophic bacteria. In: Murrell J.C., Dalton H. (Eds) Methane and Methanol Utilizers (pp 23–84) Plenum, New York

    Google Scholar 

  • Hanson R.S., Wattenberg E.V. (1991) Ecology of methylotrophic bacteria. In: Goldberg I., Rokem J.S. (Eds) Biology of methylotrophs pp 325–348. Butterworth-Heinemann, Boston, USA

    Google Scholar 

  • Hanson R.S., Bratina B.J., Brusseau G.A. (1993) Phylogeny and ecology of methylotrophic bacteria. In: Murrell J.C., Kelly D.P. (Eds) Microbial Growth on C1 Compounds pp 285–302. Intercept Press, Andover, UK

    Google Scholar 

  • Holmes A.J., Owens N.J.P., Murrell J.C. (1995a) Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment. Microbiology 141: 1947–1955

    Article  PubMed  CAS  Google Scholar 

  • Holmes A.J., Costello A., Lidstrom M.E., Murrell J.C. (1995b) Evidence that particulate methane monooxygenase and arnrnonia monooxygenase are evolutionarily related enzymes. FEMS Microbiol Lett, in press

    Google Scholar 

  • Kiene R.P. (1991) Production and consumption of methane in aquatic systems In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes (J.E. Rogers, W.B. Whitman; Eds) pp 111–146 American Society for Microbiology, Washington DC

    Google Scholar 

  • King G.M. (1992) Ecological aspects of methane oxidation, a key determinant of global methane dynamies. Adv Microb Ecol 12:431–468

    CAS  Google Scholar 

  • King G.M. (1993) Ecophysiological characteristics of obligate methanotrophic bacteria and methane oxidation in situ. In: Murrell J.C., Kelly D.P. (Eds) Microbial Growth on C1 Compounds pp 303–313. Intercept Press, Andover, UK

    Google Scholar 

  • Koh S-C., Bowman J.P., Sayler G.S. (1993) Soluble methane monooxygenase production and trichloroethylene degradation by a type 1 methanotroph Methylomonas methanica 68-1. Appl Environ Microbiol 59:960–967

    PubMed  CAS  Google Scholar 

  • Leak D.J. (1992) Biotechnological and applied aspects of methane and methanol utilizers. In: Murrell J.C., Dalton H. (Eds) Methane and Methanol Utilizers pp 245–279. Plenum Press, New York

    Google Scholar 

  • Lees V., Owens N.J.P., Murrell J.C. (1991) Nitrogen metabolism in marine methanotrophs. Arch Microbiol 157:60–65

    Article  CAS  Google Scholar 

  • Lipscomb J.D. (1994) Biochemistry of the soluble methane monooxygenase. Ann Rev Microbiol 48:371–399

    Article  CAS  Google Scholar 

  • McDonald I.R., Kenna E.M., Murrell J.C. (1995) Detection of methanotrophic bacteria in environmental samples with the PCR. Appl Environ Microbiol 61:116–121

    PubMed  CAS  Google Scholar 

  • McTavish H.J., Fuchs J.A., Hooper A.B. (1993) Sequence of the gene coding for ammonia monooxygenase in Ni trosomonas europaea. J Bact 175:2436–2444

    PubMed  CAS  Google Scholar 

  • Murrell J.C. (1992) Genetics and molecular biology of methanotrophs. FEMS Microbiol Rev 88:233–248

    Article  CAS  Google Scholar 

  • Murrell J.C. (1993) Molecular biology of methane oxidation pp. 109–120 In: Microbial Growth on C1 Compounds (J.C. Murrell, D.P. Kelly, Eds.). Intercept, Andover, UK

    Google Scholar 

  • Murrell J.C. (1994) Molecular genetics of methane oxidation. Biodegradation 5:145–159

    Article  PubMed  CAS  Google Scholar 

  • Murrell J.C., Holmes A.J. (1995) Molecular ecology of marine methanotrophs. In: Molecular Ecology of Aquatic Microbes, (I. Joint, ed.) NATO ASI Series, Springer-Verlag. In Press.

    Google Scholar 

  • Nguyen H.T., Shiemke A.K., Jacobs S.J., Hales B.J., Lidstrom M.E., Chan S.I. (1994) The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 269:14995–15005

    PubMed  CAS  Google Scholar 

  • Oldenhuis R., Janssen D.B. (1993) Degradation of trichlorethylene by methanotrophic bacteria. In: Murrell J.C., Kelly D.P. (Eds) Microbial Growth on C1 Compounds pp 121–133. Intercept Press, Andover, UK

    Google Scholar 

  • Reeburgh W.S. (1993) The role of methylotrophy in the global methane budget. In: Murrell J.C., Kelly D.P. (Eds) Microbial Growth on C1 Compounds pp 1–14. Intercept Press, Andover, UK

    Google Scholar 

  • Rudd J.W.M., Taylor C.D. (1980) Methane cycling in aquatic environments. Adv Aquat Microbiol 2:77–150.

    CAS  Google Scholar 

  • Semrau J.D., Chistoserdov A., Lebron J., Costello A., Davagnino J., Kenna E., Holmes A.J., Finch R., Murrell J.C., Lidstrom M.E. (1995). Particulate methane monooxygenase genes in methanotrophs. J Bacteriol 177:3071–3079

    PubMed  CAS  Google Scholar 

  • Stainthorpe A.C., Salmond G.P.C., Dalton H., Murrell J.C. (1990) Screening of obligate methanotrophs for soluble methane monooxygenase genes. FEMS Microbiol Lett 72:345–340

    Article  Google Scholar 

  • Tsien H.C., Bratina B.J., Tsuji K., Hanson R.S. (1990) Use of oligonucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Appl Environ Microbiol 56:2858–2865

    PubMed  CAS  Google Scholar 

  • Tsien H.C., Hanson R.S. (1992) A soluble methane monooxygenase component B gene probe for the identification of methanotrophs that rapidly oxidize trichloroethylene. Appl Environ Microbiol 58:953–960

    PubMed  CAS  Google Scholar 

  • Tsuji K., Tsien H.C., Bratina B., Bastien C., Zhang Y., Machlin S., Hanson R.S. (1989) Genetic and biochemical studies of methylotrophic bacteria. IGT Press, Chicago, USA

    Google Scholar 

  • Tsuji K., Tsien H.C., Hanson R.S., De Palma S.R., Scholtz R., La Roche S. (1990) 16S ribosomal RNA sAquences analysis for determination of phylogenetic relationship among methylotrophs. J Gen Microbiol 136:1–10

    PubMed  CAS  Google Scholar 

  • Ward D.M., Bateson M.M., Weller R., Fuff-Roberts A.L. (1992) Ribosomal RNA analysis of microorganisms as they occur in nature. Adv Microb Ecol 12:209–286

    Google Scholar 

  • Whittenbury R., Phillips K.C., Wilkinson J.F. (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Murrell, J.C., Holmes, A.J., McDonald, I.R., Kenna, E.M. (1996). Molecular Ecology of Methanotrophs. In: Murrell, J.C., Kelly, D.P. (eds) Microbiology of Atmospheric Trace Gases. NATO ASI Series, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61096-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61096-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64693-5

  • Online ISBN: 978-3-642-61096-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics