Skip to main content

Microbial Turn-over of Volatile Sulfur Compounds

  • Conference paper
Microbiology of Atmospheric Trace Gases

Part of the book series: NATO ASI Series ((ASII,volume 39))

Abstract

Biological production and consumption of sulfur gases include compounds such as H2S, methylsulfides (CH3SH, (CH3) 2S, (CH3S)2), methanesulfonate (CH3SO3H), sulfoxides (SO2), carbon disulfide (CS2) and carbonyl sulfide (COS). Only H2S, COS, SO2 and CH3SH are true gases under most environmental conditions, but other sulfur compounds, such as dimethylsulfide (DMS; (CH3)S), dimethyldisulfide (DMDS; (CH3S)2), CS2, and ethanethiol (ESH; C2H5SH) are liquids with vapor pressures which allow volatilization. Therefore, most of these sulfur compounds are gaseous and play a role in the global flux (estimated to be 210 Tg S y-1 Table 1) from aquatic and terrestrial environments to the atmosphere. There, these gases engage in various (photo)chemical reactions, often mediated by radicals such as OH, NO3 and IO (Plane 1989), and O3 (Lee and Zhou 1994). Chemical reactions yield methanesulfonate (MSA) , SO2 and SO4 2- (non-sea salt sulfate, nss). As in the sulfur cycle in the geosphere, atmospheric sulfur (S2- to S4+) is ultimately oxidized to sulfate (S 6+ ), and may return to the Earth’s surface by wet and dry deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams D.F., Farwell S.O., Robinson E., Pack M.R., Bamesberger W.L. (1981) Biogenic sulfur source strengths. Environ Sci Technol 15: 1493–1498

    Article  CAS  Google Scholar 

  • Andreae M.O. (1990) Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar Chem 30: 1–299

    Google Scholar 

  • Bak F., Pfennig N. (1987) Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147: 184–189

    Article  CAS  Google Scholar 

  • Bak F., Finster K., RothfuĂŸ P. (1992) Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated bacteria. Arch Microbiol 157: 529–534

    CAS  Google Scholar 

  • Baker S.C., Kelly D.P., Murrell J.C. (1991) Microbial degradation of methanesulphonic acid: a missing link in the biogeochemical sulphur cycle. Nature 350: 627–628

    Article  CAS  Google Scholar 

  • Barbash J.E., Reinhard M. (1989) Reactivity of sulfur nucleophiles toward halogenated organic compounds in natural waters. In: Saltzman E.S., Cooper W.J. (eds) Biogenic sulfur in the environment. Am Chem Soc, Washington DC, pp 101–138

    Google Scholar 

  • Bates T.S., Lamb B.K. (1992) Natural sulfur emissions to the atmosphere of the continental Uni ted States. Global Biogeochem Cycles 6: 431–435

    Article  CAS  Google Scholar 

  • Bates T.S., Kiene R.P., Wolfe G.V., Matrai P.A., Chavez F.P., Buck K.R., Blomquist B.W., Cuhel R.L. (1994) The cycling of sulfur in surface seawater of the ncrtheast Pacific. J. Geophys. Res 99: 7835–7843

    Article  CAS  Google Scholar 

  • Berner R.A. (1967) Diagenesis of iron sulfide in recent marine sediments. In: Lauff G.H. (ed) Estuaries. Am Assoc Adv Sci, Washington D.C., pp 268–272

    Google Scholar 

  • Bremner J.M., Steele C.G. (1978) Role of microorganisms in the atmospheric sulfur cycle. Adv Microb Ecol 2:155–201

    CAS  Google Scholar 

  • Charlson R.J., Lovelock J.E., Andreae M.O., Warren S.G. (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326: 655–661

    Article  CAS  Google Scholar 

  • Chin M., Davis D.D. (1993) Global sources and sinks of OCS and CS2 and their distributions. Global Biogeochem Cycles 7: 321–337

    Article  CAS  Google Scholar 

  • Cullis C.F., Hirschler M.M. (1980) Atmospheric sulfur: natural and man-made sources. Atmos Environ 14:1263–1278

    Article  CAS  Google Scholar 

  • Cutter B and Krahforst D. (1988) Sulfide in surface waters of the Western Atlantic Ocean. Geophys Res Lett 15: 1393–1396

    Article  CAS  Google Scholar 

  • de Wit R., van Gemerden H. (1990) Growth of the phototrophic purple sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the dark. FEMS Microb Ecol 73:69–76

    Article  Google Scholar 

  • de Zwart J.M.M., Kuenen J.G. (1992) C1-cycle of sulfur compounds. Biodegrad 3: 37–59

    Article  Google Scholar 

  • Drotar A., Burton Jr G.A., Tavernier J.E., Fall R. (1987a) Widespread occurrence of bacterial thiol methyltransferases and biogenic emission of methylated sulfur gases. Appl Environ Microbiol 53: 1626–1631

    PubMed  CAS  Google Scholar 

  • Drotar A., Fall R., Mishalanie, Tavernier J.E. (1987b) Enzyrnatic methylation of sulfide, selenide, and organic thiols by Tetrahyrnena thermophila. Appl. Environ Microbiol 53: 2111–2118

    PubMed  CAS  Google Scholar 

  • Elliott S., Lu E., Sherwood-Rowland F. (1989) Hydrogen sulfide in oxic seawater. In: Saltzman E.S., Cooper W.J. (eds) Biogenic sulfur in the environment. Am Chem Soc, Washington DC, pp 314–326

    Google Scholar 

  • Ferek R.J., Andreae M..O (1984) Photochemical production of carbonylsulphide in marine surface waters. Nature 307: 148–150

    Article  CAS  Google Scholar 

  • Finster K., King G.M., Bak F. (1990) Formation of methylmercaptan afid dirnethylsulfide from methoxylated aromatic compounds in anoxic marine and freshwater sediments. FEMS Microbiol Ecol 74:295–302

    Article  CAS  Google Scholar 

  • Finster K., Tanimoto Y., Bak F. (1992) Fermentation of methanethiol and dimethylsulfide by a newly isolatGd methanogenic bacterium. Arch Microbiol 157: 425–430

    Article  CAS  Google Scholar 

  • Francis A.J., Duxbury J.M., Alexander M. (1975) Formation of volatile organic products in soils under anaerobiosis. II Metabolism of amino acids. Soil Biol Biochem 7: 51–56

    Article  CAS  Google Scholar 

  • FrĂ¼nd, C., Cohen Y. (1992) Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl Environ Microbiol 58: 70–77

    PubMed  Google Scholar 

  • Gould W.D., Kanagawa T. (1992) Purification and properties of methyl mercaptan oxidase from Thiobacillus thioparus Tkm. J Gen Microbiol 138: 217–221

    CAS  Google Scholar 

  • Heijthuijsen J.H.F.G., Hansen T.A. (1989) Anaerobic degradation of betaine by marine Desulfobacterium strains. Arch Microbiol 152: 393–396

    Article  CAS  Google Scholar 

  • Ingvorsen K., Jørgensen B.B. (1982) Seasonal variation in H2S emission to the atmosphere from intertidal sediments in Denmark. Atmosph Environ 16: 855–865

    Article  CAS  Google Scholar 

  • Ingvorsen K., Jørgensen B.B. (1984) Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio. Arch Microbiol 139:61–66

    Article  CAS  Google Scholar 

  • Jordan S.L., Kraczkiewicz-Dowjat A.J., Kelly D.P., Wood A.P. (1995) Novel eubacteria able to grow on carbon disulfide. Arch Microbiol 163: 131–167

    Article  CAS  Google Scholar 

  • Jørgensen BB (1983) The microbial sulfur cycle. In: Krumbein WE (ed) Microbial geochemistry. Blackwell Scientific Publications, Oxford, UK, pp 91–124

    Google Scholar 

  • Jørgensen BB (1994) Sulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel cxygen cycle. FEMS Microbiol Ecol 13: 303–312

    Article  Google Scholar 

  • Jørgensen BB, Okholm-Hansen B (1985) Emissions of biogenic sulfur gases from a Danish estuary. Atmosph Environ 19: 1737–1749

    Article  Google Scholar 

  • Jørgensen BB and Bak F (1991) Pathways and microbiology of thiosulfate transformations and sul fate reduction in a marine sediment (Kattegat, Denmark). Appl Env Microbiol 57:847–856

    Google Scholar 

  • Kadota H, Ishida Y (1972) Production of volatile sulfur compounds by microorganisms. Ann Rev Microbiol 26:127–138

    Article  CAS  Google Scholar 

  • Kanagawa T, Kelly DP (1986) Breakdown of dimethyl sulphide by mixed cultures and by Thiobacillus thioparus. FEMS Microbiol Lett 34: 13–19

    CAS  Google Scholar 

  • Katayama Y, Kanagawa T, Kuraishi H (1993) Emission of carbonyla sulfide by Thiobacillus thioparus grown with thiocyanate in pure and mixed cultures. FEMS Micro Letts 114: 223–228

    Article  CAS  Google Scholar 

  • Kelly DP, Smith NA (1990) Organic sulfur compounds in the environment. Biogeochemistry, microbiology, and ecological aspects. Adv Microb Ecol 11:345–385

    CAS  Google Scholar 

  • Kiene RP (1992) Dynamics of dimethyl sulfide and dimethylsulfoniopropionate in oceanic water samples. Mar chem 37:29–52

    Article  CAS  Google Scholar 

  • Kiene RP (1993) Microbial sources and sinks for methylated sulfur compounds in the marine environment. In: Kelly DP, Murrell, JC (eds) Microbial Growth on C1 compounds, 7. Intercept, London, pp 15–33

    Google Scholar 

  • Kiene RP, Visscher PT (1987) Production and fate of methylated sulfur compounds from methionine and dimethylsulfonio-propionate in salt marsh sediments. Appl Environ Microbiol 53: 2426–2434

    PubMed  CAS  Google Scholar 

  • Kiene RP, Capone DG (1988) Microbial transformations of methylated sulfur compounds in anoxic salt marsh sediments. Microbial Ecol 15: 275–291

    Article  CAS  Google Scholar 

  • Kiene RP, Malloy KD, Taylor BF (1990) Sulfur-containing amino acids as precursors of thiols in anoxie coastal sediments. Appl Environ Microbiol 56: 156–161

    PubMed  CAS  Google Scholar 

  • Lee Y-N, Zhou X (1994) Aqueous kineties of ozone and dimethylsulfide and its atmospheric implications. J Geophys Res 99: 3597–3605

    Article  CAS  Google Scholar 

  • Luther GW III (1987) Pyrite oxidation and reduction: molecular orbit theory considerations. Geochim Cosmochim Acta 51: 3193–3199

    Article  CAS  Google Scholar 

  • Luther GW III, Chureh TM, Seudlark JR, Cosman M (1986) Inorganic and organic sulfur cycling in salt-marsh porewaters. Science 232: 746–749

    Article  PubMed  CAS  Google Scholar 

  • Marschall C, Frenzel P, Cypionka H (1993) Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch Microbiol 159: 168-173

    Google Scholar 

  • Mopper K, Taylor BF (1986) Biogeochemical eyeling of sulfur. In: Sohn M (ed) Organic marine geochemistry. Am Chem Soc, Washington DC, pp 324–339

    Google Scholar 

  • Odintsova EV, Wood AP, Kelly DP (1993) Chemolithoautotrophic growth of Thiothrix ramosa. Arch Microbiol 160: 152–157

    Article  CAS  Google Scholar 

  • Oremland RS, Kiene RP, Mathrani I, Whiticar MJ, Boone DR (1989) Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide. Appl Environ Microbiol 55: 994–1002

    PubMed  CAS  Google Scholar 

  • Oremland RS, Miller LG, Strohmaier FE (1994) Degradation of methylbromide in anaerobie sediments. Environ Sci Technol 28:514–520

    Article  CAS  Google Scholar 

  • Plane JMC (1989) Gas-phase atmospheric oxidation of biogenic sulfur compounds. In: Saltzman ES and Cooper WJ (eds) Biogenic sulfur in the environment. Am Chem Soc, Washington DC, pp 404–423

    Google Scholar 

  • Ramsing NB, KĂ¼hl M, Jørgensen (1993) Distribution of sulfate-reducing bacteria, O2, H2S in photosynthetic biofilms determined by oligonueleotide probes and microelectrodes. Appl Environ Microbiol 59: 3840–3849

    PubMed  CAS  Google Scholar 

  • Rasmussen RA, Khalil MAK, Crawford AJ, Fraser PJ (1982) Natural and anthropogenic trace gases in the Southern Hemisphere. Geophys Res Lett 9:704–707

    Article  CAS  Google Scholar 

  • Roden EE, Tuttle JH (1993) Inorganic sulfur turnover in oligohaline estuarine sediments. Biogeoehem 22:81–105

    Article  CAS  Google Scholar 

  • Rodhe H (1972) A study of the sulfur cudget for the atmosphere over northern Europe. Tellus 24: 128–138

    Article  CAS  Google Scholar 

  • Schauder R, MĂ¼ller E (1993) Polysulfide as a possible substrate for sulfur-reducing bacteria. Arch Microbiol 160: 377–382

    Article  CAS  Google Scholar 

  • Shanks AL Reeder ML (1993) Reducing microzones and sulfide production in marine snow. Mar Eeol Prog Ser 96:43–47

    Article  Google Scholar 

  • Smith NA, Kelly DP (1988a) Isolation and physiological characterization of autotrophie sulfur bacteria oxidizing dimethyl disulphide as sole source of energy. J Gen Microbiol 134: 1407–1417

    CAS  Google Scholar 

  • Smith NA, Kelly DP (1988b) Mechanisms of oxidation of dimethyl disulfide by Thiobacillus thioparus strain E6. J Gen Microbiol 134: 3031–3039

    CAS  Google Scholar 

  • SrĂ¼th NA, Kelly DP (188e) Oxidation of carbon disulfide as the sole source of energy for the autotrophic growth of Thiobacillus thioparus strain Tk-m. J Gen Microbiol 134: 3041–3048

    Google Scholar 

  • Sorokin DYu (1993) Biological oxidation of sulfur atom in C1-sulfur and other organosulfur compounds. Microbiol 62:575–581

    Google Scholar 

  • Steudler PA, Peterson BJ (1984) Contribution of gaseous sulphur from salt marshes to the global sulfur eyele. Nature (London) 311:455–457

    Article  CAS  Google Scholar 

  • Suylen GMH, Stefess GC, Kuenen JG (1986) Chemolithotrophic potential of a Hyphomicrobium species capable of growth on methylated sulfur compounds. Arch Microbiol 146: 192–198

    Article  CAS  Google Scholar 

  • Tanimoto Y, Bak F (1994) Anacrobic degradation of methylmercaptan and dimethylsulfide by newly isolated thermophilic sulfate-reducing bacteria. Appl. Environ Microbiol 60: 2450–2455

    PubMed  CAS  Google Scholar 

  • Taylor BF (1993) Bacterial transformations of organic sulfur compounds in marine environments. In: Oremland, RS (ed) Biogeochemistry of global change. Chapman & Hall, New York, pp 745–781

    Chapter  Google Scholar 

  • Taylor BF, Gilchrist DC (1991) New routes for the aerobic biodegradation of dimethylsulfoniopropionate. Appl Environ Microbiol 57: 3581–3584

    PubMed  CAS  Google Scholar 

  • Thode Andersen S, Jorgensen BB (1989) Sulfate reduction and formation of 35S-labeled FeS, FeS2 and So in coastal marine sedimetns. Limnol Oceanogr 34:793–806

    Article  CAS  Google Scholar 

  • van den Ende FP, van Gemerden H (1993) Sulfide oxidation under oxygen limitation by a Thiobacillus thioparus isolated from a marine microbial mat. FEMS Microbiol Ecol 13: 69–78

    Article  Google Scholar 

  • van der Maarel MJEC, Quist P, Dijkhuizen L, Hansen TA (1993) Anaerobic degradation of dimethylsulfoniopropionate to 3-S-methylmereaptopropionate by a marine Desulfobacterium strain. Arch Microbiol 160: 411–412

    Article  Google Scholar 

  • van Gemerden H (1993) Microbial mats: a joint venture. Mar Geol 113: 3–25

    Article  Google Scholar 

  • Vairavamurthy A, Mopper K, Taylor BF (1992) Occurrence of particle bound polysulfides and significance of their reaction with organic matter in marine sediments. J Geophys Res Lett 19: 2043–2046

    Article  Google Scholar 

  • Visseher PT, Prins RA, van Gemerden H (1992a) Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiol Ecol 86: 283–294

    Article  Google Scholar 

  • Visscher PT, Diaz MR, Taylor BF (1992b) Enumeration of bacteria which cleave or demethylate dimethylsulfoniopropionate in the Caribbean Sea. Mar Ecol Prog Ser 89:293–296

    Article  Google Scholar 

  • Visscher PT, van Gemerden H (1993) Sulfur cycling in laminated marine microbial ecosystems. In: Oremland RS (ed) Biogeochemistry of Global Change.Chapman & Hall, New York, pp 672-690

    Google Scholar 

  • Visscher PT, Taylor BF (1993) A new mechanism for the aerobic catabolism of dimethyl sulfide. Appl Environ Microbiol 59: 3784–3789

    PubMed  CAS  Google Scholar 

  • Visscher PT, Taylor BF (1994) Demethylation of dimethylsulfoniopropionate to 3-mercaptopropionate by an aerobic marine bacterium. Appl Environ Microbiol 60: 4617–4619

    PubMed  CAS  Google Scholar 

  • Whelpdale DM, Galloway JN (1979) An atmospheric sulfur budget for Eastern North America. Atmos Environ 14:409–417

    Google Scholar 

  • Zhang J-Z, Millero FJ (1993) The products from the oxidation of H2S in seawater. Geochim Cosmochim Acta 57: 1705–1718

    Article  CAS  Google Scholar 

  • Zinder SH, Brock TD (1978a) Methane, carbon dioxide, and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments. Appl Environ Microbiol 35: 344–352

    PubMed  CAS  Google Scholar 

  • Zinder SH, Brock TD (1978b) Dimethyl sulfoxide reduction by microorganisms. J Gen Microbiol 105:335–342

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Visscher, P.T. (1996). Microbial Turn-over of Volatile Sulfur Compounds. In: Murrell, J.C., Kelly, D.P. (eds) Microbiology of Atmospheric Trace Gases. NATO ASI Series, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61096-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61096-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64693-5

  • Online ISBN: 978-3-642-61096-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics