Advertisement

Anatomie

Chapter
Part of the Spezielle pathologische Anatomie book series (SPEZIELLE, volume 1 / 1)

Zusammenfassung

Die läppchenförmig aufgebaute Parotis ähnelt einer auf die Spitze gestellten Pyramide. Die Lage ist durch folgende Merkmale gekennzeichnet: Auflagerung des vorderen Abschnittes auf dem M. masseter; Ausbreitung kranial bis zum Jochbein, dorsal bis zum Tragus, kaudal bis zum vorderen Umfang des M. sternocleidomastoideus und in die Fossa submandibularis, mitunter auch zapfenartig bis in das Spatium parapharyngeum (Becker u. Brünner 1958). Die Fascia parotideomasseterica als Ausläufer des Platysma liegt dem M. masseter und dem Parotisanteil auf, welcher über den horizontalen Unterkieferast herab-reicht. Die Parotis ist sowohl mit dem M. masseter als auch der Faszie, von welcher bindegewebige Septen in die Drüsenläppchen verlaufen, fest verwachsen (Seifert 1966; Seifert et al. 1984). Der Hauptausführungsgang (Ductus parotideus, Stenon-Gang) ist 6 – 8 cm lang und nimmt folgenden Verlauf: Austritt aus der Drüse am vorderen Umfang, Verlauf über den M. masseter, danach Abknickung und Durchtritt durch den M. buccinator in die Wangenweichteile, Ausmündung in die Mundhöhle auf der Papilla parotidea gegenüber dem zweiten oberen Molaren. Die Verlaufsrichtung entspricht einer gedachten Linie vom Ansatz des Ohrläppchens zum Lippenrot der Oberlippe. Über dem M. masseter ist der Parotisgang nicht selten von kleinen akzessorischen Drüsenläppchen (Glandula parotidea accessoria) umgeben.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abbey LM, Witorsch RJ (1984) Prolactin binding in normal human minor salivary gland tissue: An immunohistochemical study. Oral Surg Oral Med Oral Pathol 58: 682–687PubMedCrossRefGoogle Scholar
  2. Arendt RM, Gerbes AL (1986) Atrialer natriuretischer Faktor. Die endokrine Funktion des Herzens. Dtsch Med Wochenschr 111: 1849–1855PubMedCrossRefGoogle Scholar
  3. Aroni K, Liossi A, Fotiou G, Agapitos E, Litsios B (1989) An immunohistochemical study of normal human neonate and adult parotid gland tissue. Detection of lysozyme, lactoferrin, arantichymotrypsin, arantitrypsin and carcinoembryonic antigen. Pathol Res Pract 183: 292–296CrossRefGoogle Scholar
  4. Auger DW, Harrison JD (1982) Ultrastructural phosphatase cytochemistry of the intercalary ducts of the parotid and submandibular salivary glands of man. Arch Oral Biol 27: 79–81PubMedCrossRefGoogle Scholar
  5. Barka T (198o) Biologically active polypeptides in submandibular glands. J Histochem Cyto-chem 28:836–859Google Scholar
  6. Barka T, Noen H van der, Michelakis AM, Schenkein I (1980) Epidermal growth factor, renin, and peptidase in cultured tumor cells of submandibular gland origin. Lab Invest 42: 656–662PubMedGoogle Scholar
  7. Barrett AW, Scully C (1994) Sioo protein in oral biology and pathology. J Oral Pathol Med 23: 433–440PubMedCrossRefGoogle Scholar
  8. Beckenkamp G (1985) Das Verteilungsmuster des zellulären oralen Immunsystems in den großen und kleinen Mundspeicheldrüsen. Immunzytochemische Befunde. HNO (Berl) 33: 196–203Google Scholar
  9. Becker W, Brunner H (1958) Über die mikroskopische Struktur der Ohrspeicheldrüse. Z Laryn-gol Rhinol 37: 397–403Google Scholar
  10. Bing J, Poulsen K, Hackenthal E, Rix E, Taugner R (1980) Renin in the submaxillary gland. A review. J Histochem Cytochem 28: 874–880PubMedCrossRefGoogle Scholar
  11. Born IA, Liewald F, Möller P (1984) Lektin-Bindungsmuster in den normalen menschlichen Kopfspeicheldrüsen. Ber Pathol 100: 252Google Scholar
  12. Born IA, Zimmer K-P, Schwechheimer K, Maier H, Möller P (1987) Binding sites of Ulex europaeus-lectin I in human parotid gland. A light-microscopic and ultrastructural study using the immunoperoxidase technique and immunocryoultramicrotomy. Cell Tissue Res 2481: 455–461Google Scholar
  13. Brandtzaeg P (1985) The oral immune system under normal and pathological conditions. Pathol Res Pract 179: 619–621PubMedCrossRefGoogle Scholar
  14. Brandtzaeg P (1987a) Translocation of immunoglobulins across human epithelia: review of the development of a transport model. Acta Histochem (Jena) Suppl XXXIV:9–32Google Scholar
  15. Brandtzaeg P (1987b) Immunbarrieren der Schleimhaut der oberen Luft-und Speisewege. Laryngorhinootologie 66: 225–236CrossRefGoogle Scholar
  16. Burford-Mason AP, Cummins MM, Brown DH, MacKay AJ, Dardick I (1993) Immunohistochemical analysis of the proliferative capacity of duct and acinar cells during ligation-induced atrophy and subsequent regeneration of rat parotid gland. J Oral Pathol Med 22: 440–446PubMedCrossRefGoogle Scholar
  17. Burns BF, Dardick I, Parks WR (1988) Intermediate filament expression in normal parotid glands and pleomorphic adenomas. Virchows Arch A Pathol Anat 413: 103–112CrossRefGoogle Scholar
  18. Busolahti E (1981) Fibronectin. J Oral Pathol 10: 3–13CrossRefGoogle Scholar
  19. Campbell JH, Terranova VP (1988) Laminin: molecular organization and biological function. J Oral Pathol 17: 309–323PubMedCrossRefGoogle Scholar
  20. Cantin M, Gutkowska J, Thibault G et al. (1984) Immuncytochemical localization of atrial natriuretic factor in the heart and salivary glands. Histochemistry 80: 113–127PubMedCrossRefGoogle Scholar
  21. Caselitz J (1987a) Basal membrane antigens as tumor markers. In: Seifert G (ed) Morphological tumor markers. General aspects and diagnostic relevance. Springer, Berlin Heidelberg New York (Current Topics in Pathology, vol 77, pp 223–243)Google Scholar
  22. Caselitz J (1987b) Lectins and blood group substances as „tumor markers“. In: Seifert G (ed) Morphological tumor markers. General aspects and diagnostic relevance. Springer, Berlin Heidelberg New York (Current Topics in Pathology, vol 77, pp 245–277)Google Scholar
  23. Caselitz J (1987c) Das pleomorphe Adenom der Speicheldrüsen. Histogenese, zelluläre Differenzierung, Tumormarker. Fischer, Stuttgart New York. Veröff Pathol 126: 1–253Google Scholar
  24. Caselitz J, Löning T, Seifert G (1980) An approach to stain actin in parotid gland cells in paraffin-embedded material Staining by human anti-actin antibodies using the indirect unlabeled immunoperoxidase technique. Virchows Arch A Pathol Anat 387: 301–305CrossRefGoogle Scholar
  25. Caselitz J, Osborn M, Seifert G, Weber K (1981a) Intermediate-sized filament proteins (prekeratin, vimentin, desmin) in the normal parotid gland and parotid gland tumours. Immunofluorescence study. Virchows Arch A Pathol Anat 393: 273–286CrossRefGoogle Scholar
  26. Caselitz J, Löning T, Staquet MJ, Seifert G, Thivolet J (1981b) Immunocytochemical demonstration of filamentous structures in the parotid gland. Occurrence of keratin and actin in normal and tumoral parotid gland with special respect to the myoepithelial cells. J Cancer Res Clin Oncol l00: 59–68CrossRefGoogle Scholar
  27. Caselitz J, Osborn M, Wustrow J, Seifert G, Weber K (1982) The expression of different intermediate-sized filaments in human salivary glands and their tumours. Pathol Res Pract 175: 266–278PubMedCrossRefGoogle Scholar
  28. Caselitz J, Osborn M, Hamper K, Wustrow J, Rauchfuß A, Weber K (1986a) Pleomorphic adenomas, adenoid cystic carcinomas and adenolymphomas of salivary glands analysed by a monoclonal antibody against myoepithelial/basal cells. An immunohistochemical study. Virchows Arch A Pathol Anat 409: 805–816CrossRefGoogle Scholar
  29. Caselitz J, Walther B, Wustrow J, Seifert G, Weber K, Osborn M (1986b) A monoclonal antibody that detects myoepithelial cells in exocrine glands, basal cells in other epithelia and basal and suprabasal cells in certain hyperplastic tissues. Virchows Arch A Pathol Anat 409: 725–738CrossRefGoogle Scholar
  30. Caselitz J, Schmitt P, Seifert G, Wustrow J, Schuppan D (1988) Basal membrane associated substances in human salivary glands and salivary gland tumours. Pathol Res Pract 183: 386–394PubMedCrossRefGoogle Scholar
  31. Caselitz J, Lichtenthäler D, Wustrow J (1992) Verteilungsmuster lymphoider Zellen in menschlichen Speicheldrüsen. Eine immunohistologische Studie an der Glandula Parotis, Submandibularis sowie bei der myoepithelialen Sialadenitis. Verh Dtsch Ges Pathol 76: 312–313Google Scholar
  32. Chaudhry IM, Kumar R, Waterhouse JP, Chambers DA (1983) A kinetic study of rat salivary gland alkaline phosphatase and its inhibition by cadmium. Arch Oral Biol 28: 741–744PubMedCrossRefGoogle Scholar
  33. Chilla R (1979) Types of facial nerve branching in the parotid plexus and their clinical significance. Clin Plast Surg 6: 451–458PubMedGoogle Scholar
  34. Cohen S (1987) Epidermal growth factor. In Vitro Cell Develop Biol 23: 239–250Google Scholar
  35. Conley J (1975) Salivary gland and the facial nerve. Thieme, Stuttgart New YorkGoogle Scholar
  36. Cossu M, Riva A, Lantini MS (1990) Subcellular localization of blood group substances ABH in human salivary glands. J Histochem Cytochem 38: 1165–1172PubMedCrossRefGoogle Scholar
  37. Cossu M, Lantini MS, Puxeddu R (1994) Immunocytochemical localization of Lewis blood group antigens in human salivary glands. J Histochem Cytochem 42: 1135–1142PubMedCrossRefGoogle Scholar
  38. Crawford JM, Taubman MA, Smith DJ (1975) Minor salivary glands as a major source of secretory immunoglobulin A in the human oral cavity. Science 190: 1206–1209PubMedCrossRefGoogle Scholar
  39. Cutler LS, Chaudhry A, Innes DJ (1977) Ultrastructure of the parotid duct. Cytochemical studies of the striated duct and papillary cystadenoma lymphomatosum of the human parotid gland. Arch Pathol Lab Med 101: 420–424PubMedGoogle Scholar
  40. Damjanov I (1991) Growth factor receptors. In: Seifert G (ed) Cell receptors. Morphological characterization and pathological aspects, Springer, Berlin Heidelberg New York Tokyo (Current Topics in Pathology, vol 83, pp 159–186 )Google Scholar
  41. Dardick I, Rippstein P, Skimming L, Boivin M, Parks WR, Dairkee SH (1987) Immunohistochemistry and ultrastructure of myoepithelium and modified myoepithelium of the ducts of human major salivary glands: Histogenetic implications for salivary gland tumors. Oral Surg Oral Med Oral Pathol 64: 703–715PubMedCrossRefGoogle Scholar
  42. Dardick I, Parks WR, Little J, Brown DL (1988) Characterization of cytoskeletal proteins in basal cells of human parotid salivary gland ducts. Virchows Arch A Pathol Anat 412: 525–532CrossRefGoogle Scholar
  43. Dardick I, Naiberg J, Leung R et al. (1990) Ultrastructural study of acinar and intercalated duct organization of submandibular and parotid salivary gland. Lab Invest 63:394–404PubMedGoogle Scholar
  44. Dardick I, Cummins M, Burford-Mason A, Mackay A (1993a) Proliferation in regeneratingrat parotid: relevance to theories of tumor induction. Lab Invest 68: 80A /458Google Scholar
  45. Dardick I, Dardick AM, MacKay AJ, Pastolero GC, Gullane PJ, Burford-Mason AP (1993b) Pathobiology of salivary glands. IV. Histogenetic concepts and cycling cells in human parotid and submandibular glands cultured in floating collagen gels. Oral Surg Oral Med Oral Pathol 76: 307–318CrossRefGoogle Scholar
  46. Dimery IW, Jones IA, Verjan RP, Raymond AK, Goepfert H, Hong WK (1987) Estrogen receptors in normal salivary gland and salivary gland carcinoma. Arch Otolaryngol Head Neck Surg 113: 1082–1085PubMedCrossRefGoogle Scholar
  47. Doive AI, Fava-de-Moraes F (1979) Histochemistry of the submandibular salivary gland of castrated male mice treated with androgens and anabolic steroids. Arch Oral Biol 24: 569–574CrossRefGoogle Scholar
  48. Donath K (1976) Die Sialadenose der Parotis. Ultrastrukturelle, klinische und experimentelle Befunde zur Sekretionspathologie. Fischer, Stuttgart New YorkGoogle Scholar
  49. Donath K, Seifert G (1977) Zur Problematik des „Helle-Zellen-Systems FEYRTER“ in der Parotis. Ultrastrukturelle Untersuchungen. Verh Dtsch Ges Pathol 61: 108–112PubMedGoogle Scholar
  50. Donath K, Hirsch-Hoffmann H-U, Seifert G (1973) Zur Pathogenese der Parotisatrophie nach experimenteller Gangunterbindung. Ultrastrukturelle Befunde am Drüsenparenchym der Rattenparotis. Virchows Arch A Pathol Anat 359: 31–48PubMedCrossRefGoogle Scholar
  51. Donath K, Spillner M, Seifert G (1974) The influence of the autonomic nervous system on the ultrastructure of the parotid acinar cells. Virchows Arch A Pathol Anat 364: 15–33CrossRefGoogle Scholar
  52. Eversole LR (1972) The histochemistry of mucosubstances in human minor salivary glands. Arch Oral Biol 17: 1225–1239PubMedCrossRefGoogle Scholar
  53. Fava-de-Moraes F, Zangheri EO, Doine AI (1979) Immunohistochemical localization of erythropoietin in the rat and mouse submandibular gland. Histochem J 11: 97–102PubMedCrossRefGoogle Scholar
  54. Fonseca I, Costa Rosa J, Félix A, Therkildsen MH, Mandel U, Soares J (1994) Simple mucin-type carbohydrate antigens (T, Tn and sialosyl-Tn) in mucoepidermoid carcinoma of the salivary glands. Histopathology 25: 537–543PubMedCrossRefGoogle Scholar
  55. Franchi A, Santoro R, Paglierani M, Bondi R (1994) Immunolocalization of alpha, alphas, and alpha6 integrin subunits in salivary tissue and adenomas of the parotid gland. J Oral Pathol Med 23: 457–460PubMedCrossRefGoogle Scholar
  56. Garrett JR, Harrison JD (1971) Activities of salivary myoepithelial cells. A review. Med Biol 57: 1–28Google Scholar
  57. Garrett JR, Kidd A (1993) The innervation of salivary glands as revealed by morphological methods. Microscopy Res Techn 26: 75–91CrossRefGoogle Scholar
  58. Geiger S, Geiger B, Leitner O, Marshak G (1987) Cytokeratin polypeptides expression in different epithelial elements of human salivary glands. Virchows Arch A Pathol Anat 410: 403–414CrossRefGoogle Scholar
  59. Goedert M, Nagy JI, Emson PC (1982) The origin of substance P in the rat submandibular gland and its major duct. Brain Res 252: 327–333PubMedCrossRefGoogle Scholar
  60. Gresik EW (1994) The granular convoluted tubule (GCT) cell in rodent submandibular gland. Microscopy Res Techn 27: 1–24CrossRefGoogle Scholar
  61. Gresik EW, Barka T (1977) Immunocytochemical localization of epidermal growth factor in mouse submandibular gland. J Histochem Cytochem 25: 1027–1035PubMedCrossRefGoogle Scholar
  62. Gresik EW, Schenkein I, Barka T (1981a) Immunocytochemical investigations on the submandibular glands of developing and adult mice using a specific antiserum to protease Al. J Histochem Cytochem 29: 1411–1417CrossRefGoogle Scholar
  63. Gresik EW, Schenkein I, Noen H van der, Barka T (1981b) Hormonal regulation of epidermal growth factor and protease in the submandibular gland of the adult mouse. Endocrinology 109: 924–929CrossRefGoogle Scholar
  64. Gresik EW, Gubits RM, Barka T (1985) In situ localization of mRNA for epidermal growth factor in the submandibular gland of the mouse. J Histochem Cytochem 33: 1235–1240PubMedCrossRefGoogle Scholar
  65. Gugliotta P, Sapino A, Macri L, Skalli O, Gabbiani G, Bussolati G (1988) Specific demonstration of myoepithelial cells by anti-alpha smooth muscle actin antibody. J Histochem Cytochem 36: 659–663PubMedCrossRefGoogle Scholar
  66. Gumberz Ch von, Seifert G (1980) Immunglobulin-containing plasma cells in chronic parotitis and malignant lymphomas of the parotid gland. Comparing immunocytochemical observations of frequency and localization. Virchows Arch A Pathol Anat 389: 435–442Google Scholar
  67. Gustafsson H, Kjörell U, Eriksson A, Virtanen I, Thornell L-E (1988) Distribution of filament proteins in developing and adult salivary glands in man. Anat Embryol (Berl) 178: 243–251CrossRefGoogle Scholar
  68. Gusterson BA, Lucas RB, Ormerod MG (1982) Distribution of epithelial membrane antigen in benign and malignant lesions of the salivary glands. Virchows Arch A Pathol Anat 397: 227–233CrossRefGoogle Scholar
  69. Hagelqvist E, Ahlner BH, Lind MG (1991) Morphology and histochemistry of rabbit submandibular gland. Acta Otolaryngol [Suppl] (Stockh) 480: 1–17CrossRefGoogle Scholar
  70. Hamosh M, Burns WA (1977) Lipolytic activity of human lingual glands (Ebner). Lab Invest 37: 603–608PubMedGoogle Scholar
  71. Haneke E, Braun D (1984) Plasmazell-Subpopulationen in den kleinen Speicheldrüsen. Dtsch Z Mund Kiefer Gesichtschir 8: 289–290PubMedGoogle Scholar
  72. Hara K, Ito M, Takeuchi J, Iijima S, Enod T, Hidaka H (1983) Distribution of S-loob protein in normal salivary glands and salivary gland tumors. Virchows Arch A Pathol Anat 401: 237–249CrossRefGoogle Scholar
  73. Harris JP, South MA (1981) Secretory component. A glandular epithelial cell marker. Am J Pathol 105: 47–53PubMedGoogle Scholar
  74. Harrison JD (1974) Minor salivary glands of man: enzyme and mucosubstance histochemical studies. Histochem J 6: 633–647PubMedCrossRefGoogle Scholar
  75. Harrison JD, Auger DW, Badir MS (1988) Ultrastructural phosphatase histochemistry of sub-mandibular and parotid salivary glands of man. Histochem J 20: 117–121PubMedCrossRefGoogle Scholar
  76. Harrison JD, Auger DW, Badir MS, Paterson KL (1987a) Ultrastructural morphology of secretory granules of submandibular and parotid salivary glands of man. Arch Oral Biol 32: 229–234CrossRefGoogle Scholar
  77. Harrison JD, Auger DW, Paterson KL, Rowley PSA (1987b) Mucin histochemistry of submandibular and parotid salivary glands of man: light and electron microscopy. Histochem J 19: 555–564CrossRefGoogle Scholar
  78. Hauser-Kronberger C, Albegger K, Saria A, Hacker GW (1992) Neuropeptides in human salivary (submandibular and parotid) glands. Acta Otolaryngol 112: 343–348PubMedGoogle Scholar
  79. Heitz PU, Kasper M, Van Norden S, Polak JM, Gregory H, Pearse AGE (1978) Immunohistochemical localization of urogastrone to human duodenal and submandibular gland. Gut 19: 408–413PubMedCrossRefGoogle Scholar
  80. Heym C, Webber R, Adler D (1994) Immunocytochemical correlation of peptides and tyrosine hydroxylase in nerve fibers of the human parotid gland. Arch Oral Biol 39: 213–221PubMedCrossRefGoogle Scholar
  81. Hosaka M, Tatemoto Y, Yamagami T, Hirosaka N, Mori M (1985) Immunohistochemical evaluation of different filament proteins in human salivary glands. Acta Histochem Cytochem (Kyoto) 18: 505–514CrossRefGoogle Scholar
  82. Hosaka M, Takai Y, Sumitomo S, Noda Y, Tanimura T, Mori M (1986a) Distribution difference of lectin binding in salivary gland treated with sialidase and trypsin. Acta Histochem (Jena) 79: 11–22CrossRefGoogle Scholar
  83. Hosaka M, Takai Y, Sumitomo S, Noda Y, Tanimura T, Mori M (1986b) Lectin binding patterns in salivary glands treated with amylase. Acta Histochem (Jena) 78: 49–63CrossRefGoogle Scholar
  84. Hurliman H (1971) Immunoglobulin synthesis and transport by human salivary glands. Current Topics in Pathology 55: 69–108Google Scholar
  85. Iozzo RV (1987) Proteoglycans and the intercellular tumor matrix. In: Seifert G (ed) Morphological tumor markers. General aspects and diagnostic relevance. Springer, Berlin Heidelberg New York (Current Topics in Pathology, vol 77, pp 207–222 )Google Scholar
  86. Isacsson G (1986) A histochemical study of rat salivary gland acid phosphatase. Arch Oral Biol 31: 95–99PubMedCrossRefGoogle Scholar
  87. Ito N, Nishi K, Nakajima M, Okamura Y, Hirota T (1989) Histochemical analysis of the chemical structure of blood group-related carbohydrate chains in serous cells of human submandibular glands using lectin staining and glycosidase digestion. J Histochem Cytochem 37: 1115–1124PubMedCrossRefGoogle Scholar
  88. Izutsu K, Cantino ME, Johnson DE (1994) A review of electron probe Xray microanalysis studies of salivary gland cells. Microscopy Res Techn 27: 71–79CrossRefGoogle Scholar
  89. Kasselberg AG, Orth DN, Gray ME, Stahlman MT (1985) Immunocytochemical localization of human epidermal growth factor/urogastrone in several human tissues. J Histochem Cytochem 33: 3315–3322CrossRefGoogle Scholar
  90. Kernohan NM, Blessing K, King G, Corbett IP, Miller ID (1991) Expression of c-erbB-2 oncoprotein in salivary gland tumours: An immunohistochemical study. J Pathol 163: 77–80PubMedCrossRefGoogle Scholar
  91. Klein RM, Sarras MP jr (1986) Binding of wheat-germ agglutinin to glycoconjugates in the salivary glands of reserpinized rats. Arch Oral Biol 31: 133–137PubMedCrossRefGoogle Scholar
  92. Klöppel G, Caselitz J (1987) Epithelial tumor markers: Oncofetal antigens (carcinoembryonic antigen, alpha fetoprotein) and epithelial membrane antigen. In: Seifert G (ed) Morphological tumor markers. General aspects and diagnostic relevance. Springer, Berlin Heidelberg New York (Current Topics in Pathology, vol 77, pp 103–132 )Google Scholar
  93. Korsrud FR, Brandtzaeg P (1982) Characterization of epithelial elements in human major salivary glands by functional markers: localization of amylase, lactoferrin, lysozyme, secretory component, and secretory immunoglobulins by paired immunofluorescence staining. J Histochem Cytochem 30: 657–666PubMedCrossRefGoogle Scholar
  94. Lamm ME, Nedrud JG, Kaetzel ChS, Mazanek MB (1995) IgA and mucosal defense. Review article. APMIS 103: 241–246PubMedCrossRefGoogle Scholar
  95. Langbein H, Rauch S, Seifert G (1971) Histochemische and autoradiographische Speicheldrüsenveränderungen nach partieller Speicheldrüsenresektion. Z Laryngol Rhinol 50: 672–685Google Scholar
  96. Leoncini P, Cintorino M, Vindigni C et al. (1988) Distribution of cytoskeletal and contractile proteins in normal and tumour bearing salivary and lacrimal glands. Virchows Arch A Pathol Anat 412: 329–337CrossRefGoogle Scholar
  97. Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science (Wash) 237: 1154–1162CrossRefGoogle Scholar
  98. Linde A, Berghem LE, Hansson H-A, Jonsson R, Redfors Y (1984) Ultrastructural localization of fibronectin in duct cells of human minor salivary glands and its immunochemical detection in minor salivary gland secretion. Arch Oral Biol 29: 921–925PubMedCrossRefGoogle Scholar
  99. Löning Th (1984) Immunpathologie der Mundschleimhaut. Orales Immunsystem-Entzündungsreaktionen-Tumor-Marker-Virusnachweis. Fischer, StuttgartGoogle Scholar
  100. Lötterle J, Heine W-D (1986) Expression von ABH- und Lewis-Antigenen an Speicheldrüsen. Immunhistochemische Untersuchungen. Verh Dtsch Ges Pathol 70: 352–357PubMedGoogle Scholar
  101. Mandel U, Petersen OW, Sorensen H, Vedtofte P, Hakomori S-I, Clausen H, Dabelsteen E (1991) Simple mucin-type carbohydrates in oral stratified squamous and salivary gland epithelia. J Invest Dermatol 97: 713–721PubMedCrossRefGoogle Scholar
  102. Marshak G, Leitner O (1987) Cytokeratin polypeptides in normal and metaplastic human salivary gland epithelia. J Oral Pathol 16: 442–449PubMedCrossRefGoogle Scholar
  103. Martinez-Hernandez A, Amenta PS (1983) The basement membrane in pathology. Lab Invest 48: 656–677PubMedGoogle Scholar
  104. Martinez-Madrigal F, Micheau C (1989) Histology of the major salivary glands. Am J Surg Pathol 13: 879–899PubMedCrossRefGoogle Scholar
  105. Matthews JB, Potts AJC, Hamburger J, Scott DGI (1985) T6 antigen-positive cells in human labial salivary glands. Arch Oral Biol 30: 325–329PubMedCrossRefGoogle Scholar
  106. Menendez-Patterson A, Suarez J, Cornejo S, Marin B (1985) Sex differences in the effect of extirpation of the submandibular salivary glands in rats. Arch Oral Biol 30:243–248CrossRefGoogle Scholar
  107. Menghi BG (1984) Reactivity of peroxidase-labeled lectins in rabbit submandibular and sub-lingual glands. Acta Histochem (Jena) 75: 27–35CrossRefGoogle Scholar
  108. Menghi BG, Accili D, Bondi A-M (1985) Influence of fixation on the lectin binding sites in the rabbit salivary glands. Acta Histochem (Jena) 76: 57–64CrossRefGoogle Scholar
  109. Minetti CASA, Valle LBS, Oliveira-Filho RM, Fava-de-Moraes F (1985) Effects of testosterone and its metabolites in relation to androgen-binding activity in murine submandibular salivary glands. Arch Oral Biol 30: 615–619PubMedCrossRefGoogle Scholar
  110. Moll R (1987) Epithelial tumor markers. Cytokeratin and tissue polypeptide antigen (TPA). In: Seifert G (ed) Morphological tumor markers. General aspects and diagnostic relevance. Springer, Berlin Heidelberg New York (Current Topics in Pathology, vol 77, pp 71 - l01 )Google Scholar
  111. Mori M (1991) Histochemistry of the salivary glands. CRS Press: Boca Raton, Ann Arbor, BostonGoogle Scholar
  112. Mori M, Hamada K, Naito R, Tsukitani K, Asano K (1983) Immunohistochemical localization of epidermal growth factor in rodent submandibular glands. Acta Histochem Cytochem (Kyoto) 16: 536–546CrossRefGoogle Scholar
  113. Mori M, Takai Y, Hosaka M, Hikosaka N (1985) Vimentin characteristically exists in granular convoluted tubules of hamster submandibularis glands–Immunohistochemical studies on comparative localization of filament proteins in salivary gland ducts -. Acta Histochem Cytochem (Kyoto) 18: 147–155CrossRefGoogle Scholar
  114. Mori M, Naito R, Tsikutani K, Okada Y, Hayashi T, Kato K (1987a) Immunohistochemical distribution of human epidermal growth factor in salivary gland tumors. Virchows Arch A Pathol Anat 411: 499–507CrossRefGoogle Scholar
  115. Mori M, Akiyama T, Morishita Y et al. (1987b) Light and electron microscopical demonstration of c-erbB-2 gene product-like immunoreactivity in human malignant tumors. Virchows Arch B Cell Pathol 54: 8–15CrossRefGoogle Scholar
  116. Mori M, Takai Y, Kunikata M (1992a) Review: Biologically active peptides in the submandibular gland–role of the granular convoluted tubule. Acta Histochem Cytochem (Kyoto) 25: 325–341CrossRefGoogle Scholar
  117. Mori M, Takai Y, Sumitomo (1992b) Salivary gland tumors: a possible origin of modified myoepithelial cells is ductal basal cells. Cancer J 5: 316–320Google Scholar
  118. Morimoto H, Monden T, Shimano T et al. (1987) Use of sulfonated probes for in situ detection of amylase mRNA in formalin-fixed paraffin sections of human pancreas and submaxillary gland. Lab Invest 57: 737–741PubMedGoogle Scholar
  119. Morinaga S, Nakajima T, Shimosato Y (1987) Normal and neoplastic myoepithelial cells in salivary glands: an immunohistochemical study. Hum Pathol 18: 1218–1226PubMedCrossRefGoogle Scholar
  120. Morley DJ, Hodes JE, Calland J, Hodes ME (1983) Immunohistochemical demonstration of ribonuclease and amylase in normal and neoplastic parotid glands. Hum Pathol 14:969–973 Moro I, Umemura S, Crago SS, Mestecky J (1984) Immunohistochemical distribution of immunoglobulins, lactoferrin, and lysozyme in human minor salivary glands. J Oral Pathol 13: 97–104Google Scholar
  121. Morrell JI, Gresik EW, Barka T (1987) Autoradiographic localization of dihydrotestosterone binding in the major salivary glands and other androgen-responsive organs of the mouse. J Histochem Cytochem 35: 1053–1058PubMedCrossRefGoogle Scholar
  122. Murphy HC, Hand AR, Dowd FJ (1994) Localization of an ecto-ATPase/cell-CAM 105 (C-CAM) in the rat parotid and submandibular glands. J Histochem Cytochem 42: 561–568PubMedCrossRefGoogle Scholar
  123. Mylius EA (1969) The identification and the role of the myoepithelial cell in salivary gland tumours. Acta Pathol Microbiol Scand (Suppl) 139: 1–59Google Scholar
  124. Naito R, Takai Y, Tsukitani K, Asano K, Mori M (1983) Use of lectins for differential localization of secretory materials of granular convoluted tubules and ducts in the submandibular gland. Acta Histochem Cytochem (Kyoto) 16: 483–493CrossRefGoogle Scholar
  125. Nakajima M, Ito N, Nishi K, Okamura Y, Hirota T (1988) Cytochemical localization of blood group substances in human salivary glands using lectin-gold complexes. J Histochem Cytochem 36: 337–348PubMedCrossRefGoogle Scholar
  126. Nakamura T, Nagura H, Kamatsu N, Watanabe K (1985) Immunocytochemical and enzymecytochemical studies on the intracellular transport mechanism of secretory immunoglobulin A and lactoferrin in human salivary glands. Virchows Arch A Pathol Anat 406: 367–372CrossRefGoogle Scholar
  127. Nakazato Y, Ishida Y, Takahashi K, Suzuki K (1985) Immunohistochemical distribution of S-too protein and glial fibrillary acid protein in normal and neoplastic salivary glands. Virchows Arch A Pathol Anat 405: 299–310CrossRefGoogle Scholar
  128. Nilsen R, Donath K (1981) Actin containing cells in normal human salivary glands. An immunohistochemical study. Virchows Arch A Pathol Anat 391: 315–322CrossRefGoogle Scholar
  129. Ninomiya T, Orito T, Tsukitani K, Mori M, Imanishi Y (1988) Immunoreactivity prolactin in lesions and tumours of salivary glands. Acta Histochem (Jena) 84: 41–50CrossRefGoogle Scholar
  130. Noda Y, Sumitomo S, Orito T, Mori M (1986a) Immunohistochemical localization of carbonic anhydrase I and II in submandibular salivary glands of the mouse, rat, hamster and guinea pig. Arch Oral Biol 31: 795–800CrossRefGoogle Scholar
  131. Noda Y, Takai Y, Hikosaka N, Meenaghan MA, Mori M (1986b) Immunohistochemical localization of carbonic anhydrase in submandibular salivary glands of mice and hamsters treated with phenylephrine, testosterone or duct-ligation. Arch Oral Biol 31: 441–447CrossRefGoogle Scholar
  132. Orstavik TB, Brandtzaeg P, Nustad K, Pierce JV (1980) Immunohistochemical localization of kallikrein in human pancreas and salivary glands. J Histochem Cytochem 28: 557–562PubMedCrossRefGoogle Scholar
  133. Oomori Y, Satoh Y, Ishikawa K, Ono K (1995) Substance P immunoreactivity in rat von Ebner’s gland. Histochem J 27: 395–400PubMedGoogle Scholar
  134. Oord JJ van den, Sunardhi-Widyaputra S, Damme B van, De Ley M (1993) Monoclonal antibody to liver metallothionein: a novel marker for myoepithelial cells. Pathol Res Pract 189: 1187–1190PubMedCrossRefGoogle Scholar
  135. Otto HF, Born JA, Schwechheimer K (1988) Immunhistologische Charakterisierung maligner Speicheldrüsentumoren. In: Weidauer H, Maier H (Hrsg) Speicheldrüsenerkrankungen. Aktuelle Diagnostik und Therapie. Springer, Berlin Heidelberg New York Tokyo, S 53–67Google Scholar
  136. Palmer RM (1986) The identification of myoepithelial cells in human salivary glands. A review and comparison of light microscopical methods. J Oral Pathol 15: 221–229PubMedCrossRefGoogle Scholar
  137. Pinkstaff CA (1993) Serous, seromucous, and special serous cells in salivary glands. Microscopy Res Techn 26: 21–31CrossRefGoogle Scholar
  138. Poulsen SS, Nexo E, Skovolsen P, Hess J, Kirkegaard P (1986) Immunohistochemical localization of epidermal growth factor in rat and man. Histochemistry 85: 389–394PubMedCrossRefGoogle Scholar
  139. Prantl F, Johannes A (1986) Vorkommen und Verteilung des tumorassoziierten Antigens CA 19–9 in der Glandula submandibularis des Menschen. Tumor Diagnostik & Therapie 7: 171–174Google Scholar
  140. Quintarelli G (1961) Histochemical studies on human mucous-secreting salivary glands. Acta Histochem (Jena) 12: 1–11Google Scholar
  141. Raubenheimer EJ (1987) The myoepithelial cell: embryology, function, and proliferative aspects. CRC Crit Rev Clin Lab Sci 25: 161–193CrossRefGoogle Scholar
  142. Redman RS (1994) Myoepithelium of salivary glands. Microscopy Res Techn 27: 25–45CrossRefGoogle Scholar
  143. Reitamo S, Klockars M, Raeste A-M (1977) Immunohistochemical identification of lysozyme in the minor salivary glands of man. Arch Oral Biol 22: 515–519PubMedCrossRefGoogle Scholar
  144. Riva A, Testa-Riva F, Fiacco M del, Lantini MS (1986) Fine structure and cytochemistry of the intralobular ducts of the human parotid gland. J Anat 122: 627–640Google Scholar
  145. Riva A, Valentino L, Lantini MS, Floris A, Riva FT (1993) 3D-structure of cells of human salivary glands as seen by SEM. Microscopy Res Techn z 6:5–20CrossRefGoogle Scholar
  146. Roberts ML (1976) Epidermal growth factor in the submandibular salivary glands of congenitally athymic mice. Arch Oral Biol 21: 265–267PubMedCrossRefGoogle Scholar
  147. Roberts IM, Solomon SE, Brusco OA, Goldberg W, Bernstein JJ (1991) Neuromodulators of the lingual von Ebner’s gland: an immunocytochemical study. Histochemistry 96: 153–156PubMedCrossRefGoogle Scholar
  148. Sahara N, Suzuki K (1984) Ultrastructural localization of dipeptidyl peptidase IV in rat salivary glands by immunocytochemistry. Cell Tissue Res 235: 427–432PubMedCrossRefGoogle Scholar
  149. Saito I, Teratani K, Inoue M, Saito A, Funatsu K, Moro I (1984) Immunohistochemical characterization of functional markers in human minor salivary gland tumors. J Oral Pathol 13: 525–534PubMedCrossRefGoogle Scholar
  150. Salido EC, Yen PH, Shapiro LJ, Fisher DA, Barajas L (1988) In situ hybridization of nerve growth factor mRNA in the mouse submandibular gland. Lab Invest 59: 625–630PubMedGoogle Scholar
  151. Salo A, Ylikoski J, Uusitalo H (1993) Distribution of calcitonin related peptide immunoreactive nerve fibers in the human submandibular gland. Neurosci Lett 150: 137–140PubMedCrossRefGoogle Scholar
  152. Sasano H, Ohkubo T, Sasano N (1988) Immunohistochemical demonstration of steroid C-21 hydroxylase in normal and neoplastic salivary glands. Cancer 61: 750–753PubMedCrossRefGoogle Scholar
  153. Sato M, Hayashi Y, Yoshida H, Yanagawa T, Yura Y, Nitta T (1984) Search for specific markers of neoplastic epithelial duct and myoepithelial cell lines established from human salivary gland and characterization of their growth in vitro. Cancer 54: 2959–2967PubMedCrossRefGoogle Scholar
  154. Schäfer Hj (1979) Zellcalcium und Zellfunktion. Fischer, Stuttgart New YorkGoogle Scholar
  155. Schätzle W (1962) Histochemie der Speicheldrüsen. Acta Histochem (Jena) 13: 62–112Google Scholar
  156. Schneyer CA, Humphreys-Beher M (1988) Effects of epidermal growth factor on isoproterenol-induced DNA synthesis in rat parotid and pancreas following removal of submandibular-sublingual glands. J Oral Pathol 17: 250–256PubMedCrossRefGoogle Scholar
  157. Scott J (1979) The proportional volume of mucous acinar cells in normal human submandibular salivary glands. Arch Oral Biol 24: 479–481PubMedCrossRefGoogle Scholar
  158. Seifert G (1960) Über Spontanveränderungen der großen Kopfspeicheldrüsen bei Laboratoriumstieren. Beitr Pathol Anat 123: 299–332PubMedGoogle Scholar
  159. Seifert G (1962) Experimentelle Speicheldrüsenveränderungen nach Einwirkung von Noradrenalin. Beitr Pathol Anat 126: 321–351PubMedGoogle Scholar
  160. Seifert G (1964) Die Sekretionsstörungen (Dyschylien) der Speicheldrüsen. Ergebn Allg Pathol Anat 44: 103–188Google Scholar
  161. Seifert G (1966) Mundhöhle, Mundspeicheldrüsen, Tonsillen und Rachen. In. Doerr W, Uehlinger E (Hrsg) Spezielle pathologische Anatomie, Bd. 1, Springer, Berlin Heidelberg New York, S1–415Google Scholar
  162. Seifert G (ed) (1987) Morphological tumor markers. General aspects and diagnostic relevance. Springer, Berlin Heidelberg New York (Current Topics in Pathology, vol 77 )CrossRefGoogle Scholar
  163. Seifert G (1991a) The expression of the epidermal growth factor and oncogenes in human tumours of the head and neck region. J Tumor Marker Oncol 6: 125–134Google Scholar
  164. Seifert G (1991b) (Hrsg) Cell receptors. Morphological characterization and pathological aspects. Springer, Berlin Heidelberg New York Tokyo (Current Topics in Pathology, vol 83, pp 1–522)Google Scholar
  165. Seifert G, Caselitz J (1989) General aspects and diagnostic relevance of morphological tumor markers. J Tumor Marker Oncol 4: 1–22Google Scholar
  166. Seifert G, Donath K (1976) Die Morphologie der Speicheldrüsenerkrankungen. Arch Otorhinolaryngol 213: 111–208PubMedCrossRefGoogle Scholar
  167. Seifert G, Caselitz J, Hamper K (1987) Receptors and proliferative markers in salivary gland tumors. J Tumor Marker Oncology 2: 291–303Google Scholar
  168. Seifert G, Donath K (1978) Über das Vorkommen sog. Heller Zellen in Speicheldrüsentumoren. Z Krebsforsch 91: 165–182CrossRefGoogle Scholar
  169. Seifert G, Miehlke A, Haubrich J, Chilla R (1984) Speicheldrüsenkrankheiten. Pathologie-KlinikTherapie-Fazialischirurgie. Thieme, Stuttgart New YorkGoogle Scholar
  170. Sendler A, Caselitz J, Seifert G, Schmiegelow P (1984) Reaction pattern of xenografted human salivary glands in nude mice. An immunohistological and autoradiographical study. Virchows Arch A Pathol Anat 403: 1–13CrossRefGoogle Scholar
  171. Sharkey KA, Templeton D (1984) Substance P in the rat parotid gland: evidence for a dual origin from the otic and trigeminal ganglia. Brain Res 304: 392–396PubMedCrossRefGoogle Scholar
  172. Shrestha P, Sumitomo S, Ogata K, Yamada K, Takai Y, Yang L, Mori M (1994) Immunreactive tenascin in tumours of salivary glands: evidence for enhanced expression in tumour stroma and production by tumour cells. Oral Oncol, Eur J Cancer 30B: 393–399Google Scholar
  173. Sirigu P, Cossu M, Perra M, Puxeddu P (1982) Histochemistry of the 3beta-hydroxysteroid, 17beta-hydroxysteroid and 3alpha-hydroxysteroid dehydrogenases in human salivary glands. Arch Oral Biol 27: 547–551PubMedCrossRefGoogle Scholar
  174. Smith PH, Toms BB (1988) Immunocytochemical localization of insulin-and glucagonlike peptides in rat salivary glands. J Histochem Cytochem 34: 627–632CrossRefGoogle Scholar
  175. Steidler NE, Reade PC (1981) An immunofluorescence study of age-dependent changes in localization of epidermal growth factors in the submandibular salivary glands of mice. Arch Oral Biol 26: 165–169PubMedCrossRefGoogle Scholar
  176. Sumi Y, Nagura H, Kaneda T, Oka T (1988) Immunoelectron microscopical localization of immunoglobulins, secretory component and J chain in the human minor salivary glands. J Oral Pathol 17: 390–395Google Scholar
  177. Sumitomo S, Kumasa S, Mitani H, Mori M (1987) Comparison of CEA distribution in lesions and tumors of salivary glands as determined with monoclonal and polyclonal antibodies. Virchows Arch B Cell Pathol 53: 133–139CrossRefGoogle Scholar
  178. Tabak LA, Levine MJ, Mandel ID, Ellison SA (1982) Role of salivary mucins in the protection of the oral cavity. J Oral Pathol 11: 1–17PubMedCrossRefGoogle Scholar
  179. Takai Y, Noda Y, Sumitomo S, Kawamura K, Mori M (1985) Immunohistochemical detection of keratin proteins in salivary gland ducts of mammals. Acta Histochem Cytochem (Kyoto) 18: 353–361CrossRefGoogle Scholar
  180. Takai Y, Murase N, Hosaka M, Sumitomo S, Noda Y, Mori M (1986a) Comparison of lectin binding patterns in salivary glands of mice and rats with special reference to different fixatives used. Acta Histochem (Jena) 78: 31–47CrossRefGoogle Scholar
  181. Takai Y, Noda Y, Sumitomo S, Sagara S, Mori M (1986b) Different bindings to lectin in human submandibular gland after enzymatic digestion. Acta Histochem (Jena) 78:111–121CrossRefGoogle Scholar
  182. Takeda Y (1987) Histoarchitecture of the human parotid duct: Light-microscopic study. Acta Anat 128: 291–294PubMedCrossRefGoogle Scholar
  183. Tanaka T, Gresik EW, Michelakis AM, Barka T (1980) Immunocytochemical localization of renin in kidneys and submandibular glands of SWR/J and C57BL/6J mice. J Histochem Cytochem 28: 1113–1118PubMedCrossRefGoogle Scholar
  184. Tandler B (1993a) Structure of mucous cells in salivary glands. Microscopy Res Techn 26: 49–56CrossRefGoogle Scholar
  185. Tandler B (1993b) Structure of the duct system in mammalian major salivary glands. Microscopy Res Techn 26:57–74CrossRefGoogle Scholar
  186. Tandler B, Philipps CJ (1993) Structure of serous cells in salivary glands. Microscopy Res Techn 26: 32–48CrossRefGoogle Scholar
  187. Tandler B, Riva A (1990) Altered serous granules in acinar cells of a human parotid gland. Ultrastruct Pathol 14: 11–19PubMedCrossRefGoogle Scholar
  188. Tatemoto Y, Kumasa S, Watanabe Y, Mori M (1987a) Immunohistochemical expression of monoclonal antibody against epithelial membrane antigen in salivary gland tumors. Acta Histochem Cytochem (Kyoto) 20: 113–124CrossRefGoogle Scholar
  189. Tatemoto Y, Kumasa S, Watanabe Y, Mori M (1987b) Epithelial membrane antigen as a marker of human salivary gland acinar and ductal function. Acta Histochem (Jena) 82: 219–226CrossRefGoogle Scholar
  190. Tatemoto Y, Tsukitani K, Oosumi H (1988) Immunohistochemical localization of human epidermal growth factor/gamma-urogastrone in submandibular glands and in their obstructive lesions. Acta Histochem Cytochem (Kyoto) 21: 291–300CrossRefGoogle Scholar
  191. Tolson ND, Daley TD, Wysocki GP (1985) Lectin probes of glycoconjugates in human salivary glands. J Oral Pathol 14: 523–530PubMedCrossRefGoogle Scholar
  192. Topilko A, Caillou B (1985) Fine structural localization of acetylcholinesterase activity in rat submandibular gland. J Histochem Cytochem 33: 439–445PubMedCrossRefGoogle Scholar
  193. Tsukitani K, Kobayashi K, Murase N, Sumitomo S, Mitani H, Mori M (1985) Characterization of cells in salivary gland lesions by immunohistochemical identification of carcinoembryonic antigens. Oral Surg Oral Med Oral Pathol 59: 595–599PubMedCrossRefGoogle Scholar
  194. Tsukitani K, Tatemoto Y, Noda Y, Mori M, Hayashi T, Kato K (1987) Immunohistochemical detection of human epidermal growth factor in submandibular glands and their tumors using a polyclonal antiserum and a monoclonal antibody. Histochemistry 87: 293–300PubMedCrossRefGoogle Scholar
  195. Uddman R, Fahrenkrug J, Malm L, Alumets J, Hakanson R, Sundler F (1980) Neuronal VIP in salivary glands: distribution and release. Acta Physiol Scand 100: 31–38CrossRefGoogle Scholar
  196. Ueba H, Uchihashi K (1991) Degranulation of acinar cells in von Ebner’s gland of the rat. J Osaka Dent Univ 25: 35–49PubMedGoogle Scholar
  197. Väänänen HK, Autio-Harmainen H (1987) Carbonic anhydrase III: a new histochemical marker for myoepithelial cells. J Histochem Cytochem 35: 683–686PubMedCrossRefGoogle Scholar
  198. Vazquez JJ, Vazquez M, Idoate MA et al. (1995) Anion exchanger immunoreactivity in human salivary glands in health and Sjögren’s syndrome. Am J Pathol 146: 1422–1432PubMedGoogle Scholar
  199. Vierbuchen M (1991) Lectin receptors. In: Seifert G (ed) Cell receptors. Morphological characterization and pathological aspects. Springer, Berlin Heidelberg New York Tokyo (Current Topics in Pathology, vol 83, pp 272–363 )Google Scholar
  200. Vigneswaran N, Hornstein OP, Niedermeier W, Gruschwitz M (1988a) Immunohistochemical study of palatal salivary glands of denture wearing patients. J Oral Pathol 17: 230–235CrossRefGoogle Scholar
  201. Vigneswaran N, Niedermeier W, Gruschwitz M (1988b) Immunhistologische Untersuchungen an palatinalen Speicheldrösen. Dtsch Z Mund Kiefer Gesichtschir 12:141–148Google Scholar
  202. Vigneswaran N, Peters K-P, Diepgen TL, Wahlich C, Hornstein OP, Haneke E (1991) Phenotying of immunocompetent cells in normal labial and palatal salivary glands and in non-autoimmune sialadenitis. J Oral Pathol Med 20: 337–344PubMedCrossRefGoogle Scholar
  203. Westhofen M, Schäfer Hj, Seifert G (1984) Calcium redistribution, calcification and stone formation in the parotid gland during experimental stimulation and hypercalcemia. Cytochemical and X-ray microanalytical investigations. Virchows Arch A Pathol Anat 402: 425–438CrossRefGoogle Scholar
  204. White SC, Mudd BD (1975) Hormonal regulation of submandibular salivary gland morphology and antigenicity in rats. Arch Oral Biol 20: 871–875PubMedCrossRefGoogle Scholar
  205. Whitley BD, Ferguson JW, Harris A, Kardos TB (1992) Immunohistochemical localization of substance P in human parotid gland. Int J Oral Maxillofac Surg 21: 54–58PubMedCrossRefGoogle Scholar
  206. Yamada K, Iwai K, Okada Y, Mori M (1989) Immunohistochemical expression of epidermal growth factor in salivary gland tumours. Virchows Arch A Pathol Anat 415: 523–531CrossRefGoogle Scholar
  207. Yamahara M, Fujito T, Ishikawa T, Shimosato T, Yokozaki H, Yasui W, Tahara E (1988) Phenotypic expression of human epidermal growth factor in foetal submandibular gland and pleomorphic adenoma of salivary gland. Virchows Arch A Pathol Anat 412: 301–306CrossRefGoogle Scholar
  208. Yamamoto R, Iishi H, Tatsuta M, Tsuji M, Terada N (1994) Inhibitory effect of sialoadenotectomy on hepatocellular tumourigenesis in male mice induced by 3-methyl-4-dimethyl-aminoazobenzene. Virchows Arch 425: 79–82PubMedCrossRefGoogle Scholar
  209. Yura Y, Tsujimoto H, Kusaka J, Yoshida H, Sato M (1995) Effects of testosterone on tumor induction and epidermal growth factor production in the mouse submandibular gland. J Oral Pathol Med 24: 303–308PubMedCrossRefGoogle Scholar
  210. Zarbo RJ, Regezi JA, Lloyd RV, Crissman JD, Batsakis JG (1987) HLA-DR antigens in normal, inflammatory, and neoplastic salivary glands. Oral Surg Oral Med Oral Pathol 64: 577–584PubMedCrossRefGoogle Scholar
  211. Zimmer KP, Caselitz J, Seifert G, Grenner G (1984) Immunoelectron microscopy of amylase in the human parotid gland. Ultrastructural localization by use of both the protein A-gold and the biotin-avidin-gold technique. Virchows Arch A Pathol Anat 404: 187–196CrossRefGoogle Scholar
  212. Zimmer KP, Caselitz J, Seifert G (1985) Subcellular localization of tissue polypeptide antigen and cytokeratins in epithelial cells (salivary and mammary glands). Combined use of the cryoultramicrotomy and the protein A-gold technique. Virchows Arch B Cell Pathol 49: 161–173CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  1. 1.Institut für Pathologie der UniversitätHamburgDeutschland

Personalised recommendations