Skip to main content

Somaclonal Variation for Salt Tolerance in Tomato and Potato

  • Chapter

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 36))

Abstract

Currently, genetic improvement of crop tolerance to salinity (and to other prevailing stresses) is considered a major practical alternative for improving agricultural productivity in many arid and semiarid areas in both developed and developing countries. A great effort has been directed toward the development of salt-tolerant crop plants principally through: (1) use of conventional plant breeding (Epstein et al. 1980; Saranga et al. 1992) as well as by more modern molecular techniques (Winicov 1994), both involving the transfer of genes from salt-tolerant plants into the relatively more sensitive ones; (2) use of variability existing or produced in tissue and cell culture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bajaj YPS (1987) Biotechnology in agriculture and forestry, vol 3. Potato. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ball SG (1990) Molecular basis of somaclonal variation. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 11. Somaclonal variation in crop improvement I. Springer Berlin Heidelberg New York, pp 134–152

    Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120: 1095–1103

    PubMed  CAS  Google Scholar 

  • Bressan RA, Hasegawa PM, Handa AK (1981) Resistance of cultured higher plant cells to polyethylene glycol-induced water stress. Plant Sci Lett 21: 23–30

    Article  CAS  Google Scholar 

  • Buiatti M, Morpurgo R (1990) Somaclonal variation in tomato. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 11. Somaclonal variation in crop improvement I. Springer Berlin Heidelberg New York, pp 400– 415

    Google Scholar 

  • Chandler SF, Thorpe RA (1986) Variation from plant tissue cultures: biotechnological application to improving salinity tolerance. Biotechnol Adv 4: 117–135

    Article  PubMed  CAS  Google Scholar 

  • Chandler SF, Pack KY, Pua E-C, Rogolsky E, Mandal BB, Thorpe TA (1988) The effectiveness of selection for salinity tolerance using in vitro shoot cultures. Bot Gaz 149: 166–172

    Article  Google Scholar 

  • Collin HA, Dix PJ (1990) Culture systems and selection procedures. In: Dix PJ (ed) Plant cell line selection procedures and applications. VCH, Weinheim, pp 3–18

    Google Scholar 

  • Dehan K, Tal M (1978) Salt tolerance in the wild relatives of the cultivated tomato: response of Solanum pennellii to high salinity. Irrig Sci 1: 71–76

    Article  Google Scholar 

  • Dix PJ (1993) The role of mutant cell lines in studies on environmental stress tolerance: an assessment. Plant J 3: 309–313

    Article  CAS  Google Scholar 

  • Dracup M (1991) Increased salt tolerance of plants through cell culture requires greater understanding of tolerance mechanisms. Aust J Plant Physiol 18: 1–15

    Article  CAS  Google Scholar 

  • Epstein E, Norlyn JD, Rush DW, Kingsbury RW, Kelly DB, Canningham GA, Wrona AF (1980) Saline culture of crops: a genetic approach. Science 210: 399–404

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Reina G, Moreno V, Luque A (1988a) Selection for NaCl tolerance in cell culture of three canary island tomato and races. I. Recovery of tolerant plantlets from NaCl-tolerant cell strains. J Plant Physiol 133: 1–6

    CAS  Google Scholar 

  • Garcia-Reina G, Moreno V, Luque A (1988b) Selection for NaCl tolerance in cell culture of three canary island tomato and races. II. Inorganic ion content in tolerant calli and somaclones. J Plant Physiol 133: 7–11

    CAS  Google Scholar 

  • Handa AK, Bressan RA, Hasegawa PM (1982) Characterization of cultured cells after prolonged exposure to medium containing polyethylene glycol. Plant Physiol 69: 514–521

    Article  PubMed  CAS  Google Scholar 

  • Handa AK, Bressan RA, Handa S, Hasegawa PM (1983) Clonal variation for tolerance to polyethylene glycol-induced water stress in cultured tomato cells. Plant Physiol 72: 645–653

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR (1984) Cell culture and recombinant DNA methods for understanding and improving salt resistance of plants. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants. Strategies for crop improvement. Wiley, New York, pp 335–359

    Google Scholar 

  • Harms CT, Oertli JJ (1985) The use of osmotically adapted cell cultures to study salt tolerance in vitro. J Plant Physiol 120: 29–38

    CAS  Google Scholar 

  • Hawkes JG (1990) The potato. Evolution, biodiversity and genetic resources. Belhaven Press, London

    Google Scholar 

  • Hille J, Koornneef M, Ramanna MS, Zabel P (1989) Tomato: a crop species amenable to improvement by cellular and molecular methods. Euphytica 42:1–23

    Article  CAS  Google Scholar 

  • Howard HW (1978) The production of new varieties. In: Harris PM (ed) The potato crop. Chapman and Hall, London, pp 607–646

    Google Scholar 

  • Karp A (1990) Somaclonal variation in potato. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 11. Somaclonal variation in crop improvement I. Springer, Berlin Heidelberg New York, pp 379–399

    Google Scholar 

  • Koornneef M, Hanhart C, Jongsma M, Toma I, Weide R, Zabel P, Hille J (1986) Breeding of a tomato genotype readily accessible to genetic manipulation. Plant Sci 45: 201–208

    Article  Google Scholar 

  • McHughen A Swartz M (1984) A tissue culture derived salt-tolerant line of flax (Linum usitatissimum). J Plant Physiol 117: 109–117

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Nabors MW (1990) Environmental stress resistance. In: Dix PJ (ed) Plant cell line selection procedures and applications. VCH, Weinheim, pp 167–186

    Google Scholar 

  • Oertli JJ (1968) Extracellular salt accumulation, a possible mechanism of salt injury in plants. Agrochemica 12: 461–469

    Google Scholar 

  • Okamura M (1994) Pomato: Potato protoplast system and somatic hybridization between potato and wild tomato. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 27. Somatic hybridization in crop improvement I. Springer, Berlin Heidelberg New York, pp 209–223

    Chapter  Google Scholar 

  • Perez-Alfocea F, Guerrier G, Estan MT, Bolarin Maria C (1994a) Comparative salt responses at cell and whole plant levels of cultivated and wild tomato species and their hybrid. J Hortic Sci 69: 639–644

    Google Scholar 

  • Perez-Alfocea F, Santa-Cruz A, Guerrier G, Bolarin Maria C (1994b) NaCl stress-induced organic solute changes on leaves and calli of Lycopersicon esculentum, L. pennellii and their interspecific hybrid. J Plant Physiol 143: 106–111

    CAS  Google Scholar 

  • Rains DW, Croughan SS, Croughan TP (1986) Isolation and characterization of mutant cell lines and plants: salt tolerance. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol 3. Academic Press, Orlando, pp 537–547

    Google Scholar 

  • Rick CM (1979) Biosystematic studies in Lycopersicon and closely related species of Solanum. In: Hawks JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic Press, London, pp 667–678

    Google Scholar 

  • Rosen A, Tal M (1981) Salt tolerance in the wild relatives of the cultivated tomato: responses of protoplasts isolated from leaves of Lycopersicon esculentum and L. peruvianum plants to NaCl and proline. Z Pflanzenphysiol 102: 91–94

    CAS  Google Scholar 

  • Rush DW, Epstein E (1976) Genotypic response to salinity. Differences between salt sensitive and salt tolerant genotypes of the tomato. Plant Physiol 57: 162–166

    Article  PubMed  CAS  Google Scholar 

  • Rush DW, Epstein E (1981) Comparative studies on the sodium, potassium and chloride relations of a wild halophytic and a domestic salt-sensitive tomato species. Plant Physiol 68: 1308–1313

    Article  PubMed  CAS  Google Scholar 

  • Sabbah S (1994) The response of plants and cultured cells of the cultivated potato Solanum tuberosum and its wild relative S. kurzianum to salt stress. PhD Dissertation (summary in English), Ben Gurion University of the Negev, Beer Sheva, Israel

    Google Scholar 

  • Sabbah S, Tal M (1990) Development of calli and cells of potato resistant to NaCl and mannitol and their response to stress. Plant Cell Tissue Organ Cult 21: 119–128

    Article  CAS  Google Scholar 

  • Sabbah S, Tal M (1995) Salt tolerance in Solanum kurzianum and S. tuberosum cvs. Alpha and Russet Burbank. Potato Research (in press)

    Google Scholar 

  • Sabbah S, Raise M, Tal M (1995) Methylation of DNA in NaCl-adapted cells of potato. Plant Cell Rep 14: 467–470

    Article  CAS  Google Scholar 

  • Saranga Y, Cahaner A, Zamir D, Marani A, Rudich Y (1992) Breeding tomatoes for salt tolerance: inheritance of salt tolerance and related traits in interspecific population. Theor Appl Genet 84: 390–396

    Article  Google Scholar 

  • Sink KC, Reynolds JF (1986) Tomato (Lycopersicon esculentum L.) In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 2. Crops I. Springer, Berlin Heidelberg New York, pp 319– 344

    Google Scholar 

  • Spiker S (1985) Plant chromatin structure. Annu Rev Plant Physiol 36: 235–253

    Article  CAS  Google Scholar 

  • Sumaryati S, Negrutin I, Jacobs M (1992) Characterization and regeneration of salt- and water-stress mutants from protoplast culture of Nicotiana plumbaginifolia (Viviani). Theor Appl Genet 83: 613–619

    Article  CAS  Google Scholar 

  • Tal M (1971) Salt tolerance in the wild relatives of the cultivated tomato: responses of Lycopersicon esculentum, L. peruvianum and L. esculentum minor to NaCl solution. Aust J Agric Res 22: 631–638

    CAS  Google Scholar 

  • Tal M (1990) Somaclonal variation for salt resistance. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 11. Somaclonal variation in crop improvement I. Springer, Berlin Heidelberg New York, pp 236–257

    Google Scholar 

  • Tal M (1993) In vitro methodology for increasing salt tolerance in crop plants. Acta Hortic 336: 69–78

    Google Scholar 

  • Tal M (1994) In vitro selection for salt tolerance in crop plants: theoretical and practical considerations. In Vitro Cell Dev Biol Plant 30P: 175–180

    Article  Google Scholar 

  • Tal M, Shannon MC (1983) Salt tolerance in the wild relatives of the cultivated tomato: responses of Lycopersicon esculentum, L. cheesmanii, L. peruvianum, Solanum pennellii and Fx hybrids to high salinity. Aust J Plant Physiol 10: 109–117

    Article  Google Scholar 

  • Tal M, Heikin H, Dehan K (1978) Salt tolerance in the wild relatives of the cultivated tomato: responses of callus tissues of Lycopersicon esculentum, L. peruvianum and Solanum pennellii to high salinity. Z Pflanzenphysiol 86: 231–240

    CAS  Google Scholar 

  • Taleisnik-Gertel E, Tal M, Shannon MC (1983) The response to NaCl of excised fully differentiated and differentiating tissues of the cultivated tomato, Lycopersicon esculentum, and its wild relatives, L. peruvianum and Solanum pennellii. Physiol Plant 59: 659–663

    Article  CAS  Google Scholar 

  • Vajrabhaya M, Thanapaisai T, Vajrabhaya T (1989) Development of salt tolerant lines of KDML and LPT rice cultivars through tissue culture. Plant Cell Rep 8: 411–414

    Article  Google Scholar 

  • Van Swaaij AC, Jacobson E, Kiel JAK, Feenstra WJ (1986) Selection, characterization and regeneration of hydroxyproline-resistant cell lines of Solanum tuberosum. tolerance of NaCl and freezing stress. Physiol Plant 68: 359–366

    Article  Google Scholar 

  • Winicov I (1991) Characterization of salt tolerant alfalfa (Medicago sativa L.) plants regenerated from salt tolerant cell lines. Plant Cell Rep 10: 561–564

    Article  CAS  Google Scholar 

  • Winicov I (1994) Gene expression in relation to salt tolerance. In: Basra AS (ed) Stress-induced gene expression in plants. Harwood Academic Publishers, New York, pp 61–85

    Google Scholar 

  • Zamora AB (1991) Tissue culture and in vitro selection. In: Final Report to US Agency for International Development (AID), 1 Oct 1986-31 March 1991, Proj No C5-221. Inst Plant Breeding, Univ Philippines at Los Banos, Laguna 4031, Philippines

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tal, M. (1996). Somaclonal Variation for Salt Tolerance in Tomato and Potato. In: Bajaj, Y.P.S. (eds) Somaclonal Variation in Crop Improvement II. Biotechnology in Agriculture and Forestry, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61081-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61081-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64684-3

  • Online ISBN: 978-3-642-61081-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics