Skip to main content

Stratosphere-Troposphere Exchange and its role in the budget of tropospheric ozone

  • Conference paper

Part of the book series: NATO ASI Series ((ASII,volume 35))

Abstract

The stratosphere and troposphere are coupled dynamically, chemically, and radiatively. A particularly important coupling process is the exchange of mass and trace chemical constituents between the stratosphere and the troposphere. The upward transport of tropospheric constituents (both those of natural and those of anthropogenic origin) into the stratosphere initiates much of the chemistry that is responsible for global ozone depletion. The downward transport of stratospheric constituents into the troposphere not only serves as the major sink for some of the constituents involved in stratospheric ozone depletion, but also furnishes reactive species that modify tropospheric chemistry, and provides a source of tropospheric ozone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allam, R.J. and A.F. Tuck (1984) Transport of water vapour in a stratosphere-troposphere general circulation model. I: Fluxes. Quart. J. R. Met. Soc. 110,321–356.

    Article  Google Scholar 

  • Andreae, M.O., E.V. Browell, M. Garstang, G.L. Gregory, R.C. Harriss, G.F. Hill, D.J. Jacob, M.C. Pereira, G.W. Sachse, A.W. Setzer, P.L. Silva Dias, R.W. Talbot, A.L. Torres and S.C. Wofsy (1992) Biomass burning emissions and associated haze layers over Amazonia, J. Geophys. Res. 93,1509–1527.

    Article  Google Scholar 

  • Crutzen, P.J. (1973) A discussion of the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appi. Geophys. 106–108,1385–1399.

    Article  Google Scholar 

  • Crutzen, P.J., L.E. Heidt, J.P. Krasnec, W.H. Pollock and W. Seiler (1979) Biomass burning as a source of atmospheric gases CO, H2, N20, NO, CH3C1 and COS. Nature 282, 253–256.

    Article  Google Scholar 

  • Crutzen, P.J. and P.H. Zimmermann (1991) The changing photochemistry of the troposphere. Tellus 43AB, 136–155.

    Google Scholar 

  • Danielsen, E.F. and V.A. Mohnen (1977) Project duststorm report: ozone transport, in situ measurements and meteorological analyses of tropopause folding. J. Geophys. Res. 82,5867–5877.

    Article  Google Scholar 

  • Dentener, F.J. and P.J. Crutzen (1993) Reaction of N205 on tropospheric aerosols: impact on the global distributions of NOx, 03 and OH. J. Geophys. Res. 98,7149–7163.

    Article  Google Scholar 

  • Ebel. A., H. Hass, H.J. Jacobs, M. Laube, M. Memmesheimer, A. Oberreuter, H. Geiss and Y.-H. Kuo (1991) Simulation of ozone intrusion caused by a tropopause fold and cut-off low. Atmos. Environ. 25A, 2131–2144.

    Google Scholar 

  • Feister, U. and W. Warmbt (1987) Long-term measurements of surface ozone in the German Democratic Republic. J. Atmos. Chem. 5,1–21.

    Article  Google Scholar 

  • Fishman, J., K. Fakhruzzaman, B. Cros and D. Nganga (1991) Identification of widespread pollution in the Southern Hemisphere deduced from satellite analyses. Science 252,1693–1696.

    Article  Google Scholar 

  • Follows, M.J. and J.F. Austin (1992) A zonal average model of the stratospheric contributions to the tropospheric ozone budget. J. Geophys. Res. 97,18047–18060.

    Google Scholar 

  • Gidel, L.T. and M.A. Shapiro (1979) The role of clear air turbulence in the generation of potential voracity in the vicinity of upper tropospheric jet stream frontal systems. J. Atmos. Sci. 36,2125–2138.

    Article  Google Scholar 

  • Guicherit, R. (1988) Ozone on an urban and regional scale. In: I.S.A. Isaksen, Ozone in the atmosphere. D. Reidei Pubi. Co., Dordrecht, 49–62.

    Google Scholar 

  • Hakola, H., S. Joffre, H. Lattila and P. Taalas (1991) Transport, formation and sink processes behind surface ozone variability in North European conditions. Atmos. Environ, 25 A, 1437–1447.

    Google Scholar 

  • Haynes, P. H., C. J. Marks, M. E. Mclntyre, T. G. Shepherd and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48,651–678.

    Article  Google Scholar 

  • Holton, J.R. (1990) On the global exchange of mass between the stratosphere and troposphere. J. Atmos. Sci. 47,392–395.

    Article  Google Scholar 

  • Holton, J. R., P. H. Haynes, M. E. Mclntyre, A. R. Douglass, R. B. Rood and L. Pfister (1995): Stratosphere-troposphere exchange. Reviews of Geophysics, (in press).

    Google Scholar 

  • Hoskins, B. J., 1991: Towards a PV-theta view of the general circulation. Tellus, 43AB, 27–35.

    Google Scholar 

  • Junge, C. E., (1962) Global ozone budget and exchange between stratosphere and troposphere, Tellus, 14,363–377.

    Article  Google Scholar 

  • Kato, H., S.-I. Fujita and S. Nishinomiya (1989) Mechanism of spring high oxidant episode - A meteorological analysis in and around the Hokuriku district, Japan. Atmos. Environ. 24A, 2033–2033.

    Google Scholar 

  • Kirchoff, V.W.J.H. (1988) Surface ozone measurements in amazonia.]. Geophys. Res. 93,1469–1476.

    Article  Google Scholar 

  • Komhyr, W. D., S. J. Oltmans, P. R. Franchois, W. F. J. Evans and W. A. Matthews (1989) The latitudinal distribution of ozone to 35 km altitude from ECC ozonesonde observations, 1985–1987. In: D. Bojkov and P. Fabian (eds.) Ozone in the atmosphere. A. Deepak Publishing, Hampton, V A, 147–150.

    Google Scholar 

  • Lacis, A.A., D.J. Wuebbles and J.A. Logan (1990) Radiative forcing of climate by changes in the vertical distribution of ozone. J. Geophys. Res. 95,9971–9982.

    Article  Google Scholar 

  • Lelieveld, J. and P.J. Crutzen (1990) Influences of cloud photochemical processes on tropospheric ozone. Nature 343,227–233.

    Article  Google Scholar 

  • Lelieveld, J. and P.J. Crutzen (1994) Role of deep cloud convection in the ozone budget of the troposphere. Science 264,1759–1761.

    Article  Google Scholar 

  • Lelieveld, J. and R. van Dorland (1995) Ozone chemistry changes in the troposphere and consequent radiative forcing of climate. In: W.-C. Wang and LS. A. Isaksen, Atmospheric ozone as a climate gas. D. Reidei Pubi., Dordrecht (in press).

    Google Scholar 

  • Levy II, H. (1971) Normal atmosphere: large radical and formaldehyde concentrations predicted. Science 173,141–143.

    Article  Google Scholar 

  • Levy II, H., J.D. Mahlman, W.J. Moxim and S.C. Liu (1985) Tropospheric ozone: the role of transport. J. Geophys. Res. 90,3753–3772.

    Article  Google Scholar 

  • Liu, S.C, M. Trainer, F.C. Fehsenfeld, D.D. Parrish, E.J. Williams, D.W. Fahey, G. Huebler and P.C. Murphy (1987) Ozone production in the rural troposphere and the implications for regional and global ozone production, f. Geophys. Res. 92, 4191–4207.

    Article  Google Scholar 

  • Logan, J.A. (1985) Tropospheric ozone: seasonal behavior, trends and anthropogenic influence. J. Geophys. Res. 90,10463–10482.

    Article  Google Scholar 

  • Mahlman, J.D., H. Levy II and W.J. Moxim (1980) Three-dimensional tracer structure and behavior as simulated in two ozone precursor experiments. J. Atmos. Sci. 37, 655–685.

    Article  Google Scholar 

  • Mote, P. W., K. H. Rosenlof, J. R. Holton, R. S. Harwood and J. W. Waters (1995) Seasonal variations of water vapour in the tropical lower stratosphere. Geophys. Res. Lett. 22 (in press).

    Google Scholar 

  • Murphy, D.M. and D.W. Fahey (1994) An estimate of the flux of stratospheric reactive nitrogen and ozone into the troposphere. J. Geophys. Res. 99,5325–5332.

    Article  Google Scholar 

  • Oort, A.H. (1983) Global atmospheric circulation statistics, 1958–1973. NOAA Professional Paper No. 14, US Government Printing Office. Washington, DC.

    Google Scholar 

  • Penkett, S.A. and K.A. Brice (1986) The spring maximum in photo-oxidants in the northern hemisphere troposphere. Nature 319,655–657.

    Article  Google Scholar 

  • Prospero, J.M., R. Schmitt, E. Cuevas, D. Savoie, W. Graustein, K. Turekian, A. Volz-Thomas, S. Oltmans and H. Levy II (1995) Temporal variability of ozone and aerosols in the free troposphere over the eastern North Atlantic. Submitted to Geophys. Res. Lett.

    Google Scholar 

  • Rosenlof, K. H. and J. R. Holton, 1993: Estimates of the stratospheric residual circulation using the downward control principle, J. Geophys. Res., 98,10,465–10,479.

    Article  Google Scholar 

  • Savoie D.L., J.M. Prospero, S. Oltmans, W.C. Graustein, K.K. Turekian, J.T. Merrill and H. Levy II (1992) Sources of nitrate and ozone in the marine boundary layer of the tropical North Atlantic. J. Geophys. Res. 97,11575–11589.

    Google Scholar 

  • Staehelin, J. and W. Schmid (1991) Trend analysis of tropospheric ozone concentrations utilizing the 20-year data set of balloon soundings over Payerne (Switzerland). Atmos. Environ. 25A, 1739–1751.

    Google Scholar 

  • Stallard, R.F., J.M. Edmond and R.E. Newell (1975) Surface ozone in the southeast Atlantic between Dakar and Walvis Bay. Geophys. Res. Lett. 7, 289–292.

    Article  Google Scholar 

  • Tuck, A. F., J. M. Russell III and J. E. Harries, 1993: Stratospheric dryness: antiphased desiccation over Micronesia and Antarctica. Geophys. Res. Lett., 20, 1227–1230.

    Article  Google Scholar 

  • Vaughan, G. (1988) Stratosphere-troposphere exchange of ozone. In: I.S.A. Isaksen (ed.) Tropospheric ozone. D. Reidei Pubi. Co. Dordrecht, 125–135.

    Google Scholar 

  • Volz, A. and D. Kley (1988) Ozone measurements made in the 19th century: an evaluation of Montsouris series. Nature 332,240–242.

    Article  Google Scholar 

  • WMO (1986) Atmospheric ozone 1985. WMO report 16, World Meteorological Organization, Geneva.

    Google Scholar 

  • Yulaeva, E., J. R. Holton and J. M. Wallace (1994) On the cause of the annual cycle in the tropical lower stratospheric temperature, J. Atmos. Sci., 51,169–174.

    Article  Google Scholar 

  • Zimmermann, P.H. (1987) MOGUNTIA: A handy global tracer model. In: H. van Dop, Air pollution modelling and its application. Kluwer, Dordrecht, 593–608.

    Google Scholar 

  • Zimmermann, P.H., J. Feichter, H.K. Rath, P.J. Crutzen and W. Weiss (1989) A global three-dimensional source-receptor model investigation using 85Kr. Atmos. Environ. 23, 25–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holton, J.R., Lelieveld, J. (1996). Stratosphere-Troposphere Exchange and its role in the budget of tropospheric ozone. In: Crutzen, P.J., Ramanathan, V. (eds) Clouds, Chemistry and Climate. NATO ASI Series, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61051-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61051-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64672-0

  • Online ISBN: 978-3-642-61051-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics