Advertisement

KAMEDIN - Teleconferencing and Automatic Image Analysis for Medical Applications

  • P. Bernardes
  • Ch. Busch
  • M. Groß
  • J. Miehe
  • S. Nowacki
  • A. Will
  • Ch. Hahn
  • H. Handels
  • H. Putzar
  • E. Rinast
  • K. Rösler
Conference paper
Part of the Beiträge zur Graphischen Datenverarbeitung book series (GRAPHISCHEN)

Abstract

The importance of cooperative work is growing in some medical areas such as radiology. The development of more efficient methods for Computer Supported Cooperative Work (CSCW) is necessary for the introduction of computer support techniques in medical applications. A realisation of CSCW-functions for the support of cooperative work in radiology is being developed in the cooperation project KAMEDIN (Kooperatives Arbeiten and MEdizinische Diagnostik auf Innovativen Netzen). Radiological image data is kept locally in a workstation where it will be exchanged, processed and analysed by two remotely located medical experts using an ISDN connection. Artificial neural networks and high-level image processing procedures are used for classification and 3D reconstruction of different tissues. Kohonen-Feature-Maps are used successfully for the classification task.

Keywords

Artificial Neural Network Cooperative Work Single Instruction Multiple Data Computer Support Cooperative Work Session Manager 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ch. Busch, M. Groß, H. Handels, Th. Roß, Ch. Hahn, E. Rinast, K. Rösler, H. Putzar, J. Miehe, S. Nowacki, A. Will, U. von Lucas: Kooperatives Arbeiten und rechnergestützte Ferndiagnostik mittels neuronaler Netze auf ISDN-Leitungen. 38th Annual Meeting of GMDS, 1993.Google Scholar
  2. 2.
    Ch. Busch, M. H. Groß: Interactive Neural Network Texture Analysis and Visualization for Surface Reconstruction in Medical Imaging, in: Computer Graphics Forum, Vol. 12, no. 3, Conf. Iss., Barcelona, Eds. R.J. Hubbold and R. Juan, 1993.Google Scholar
  3. 3.
    Ch. Hahn, H. Handels, E. Rinast, Ch. Busch, M. Groß, J. Miehe, S. Nowacki, A. Will, K. Rösler, H. Putzar: Telekonferenzen über ISDN mit dem Softwaresystem KAMEDIN, presented in the Workshop of Digital Image Processing in Medicine, University of Freiburg, 2nd-4th March 1994.Google Scholar
  4. 4.
    T. Kohonen: The Self-Organizing Map. Proceedings of the IEEE, Vol. 78, No. 9, pp. 1464–1480, 1990.CrossRefGoogle Scholar
  5. 5.
    H. Müller, A. Klingert: Surface Interpolation from Cross Sections, in: Focus of Scientific Visualization, H. Hagen, H. Müller and G. Nielson (eds.), Springer, 1993, pp. 139–185.Google Scholar
  6. 6.
    D. E. Rumelhart, J. L. McClelland: Parallel Distribution Processing. Explorations in the Microstructure of Cognition, Vol. 1 and 2., MIT Press, Cambridge, Massachusetts, 1986.Google Scholar
  7. 7.
    D. Willet: Grundlagen, Konzeption und Realisierung multidimensionaler Bildanalyse mit Neuronalen Netzen unter Verwendung eines Vectorrechners. Diploma Theses, TH Darmstadt, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • P. Bernardes
  • Ch. Busch
  • M. Groß
  • J. Miehe
  • S. Nowacki
  • A. Will
  • Ch. Hahn
  • H. Handels
  • H. Putzar
  • E. Rinast
  • K. Rösler

There are no affiliations available

Personalised recommendations