Skip to main content

Drug Interactions at Plasma and Tissue Binding Sites

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 122))

Abstract

The binding of drugs to plasma and tissue proteins is a major determinant of drug distribution throughout the body. This binding has also a very important effect on drug dynamics since it is only the free (unbound) drug which can diffuse to, and interact with, receptor sites, i.e., bound drug is pharmacologically inactive. The relative ease of study in vitro of the binding of drugs in human plasma and in separate protein fractions (mainly albumin) has led to an extensive literature on the subject, with the influence of other drugs and/or endogenous materials on drug binding being a common topic for investigation. The relative difficulty in obtaining samples of viable human tissues has meant that work on the binding of drugs to human tissues has been very limited by comparison, although this may change with the more widespread use of tissue culture techniques. It is as a result of this large body of largely in vitro data that the topic of protein binding displacement interactions has gained prominence as a possible mechanism of drug-drug interactions; however, as mentioned in Chap. 1 of this volume, the importance of plasma protein binding displacement interactions has been overestimated and overstated and only in very specific cases do they result in adverse outcomes. In this chapter the influence of plasma and tissue binding on drug kinetics is discussed to facilitate consideration of the consequences of drug displacement from binding sites and their possible clinical significance. Those cases in which displacement can lead to clinically significant outcomes, which are much more restrictive than much of the literature and popular belief amongst practitioners would suggest, are considered in some detail. Before moving on the these issues, the proteins involved in drug binding are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggeler PM, O’Reilly RA, Leong L, Kowitz PE (1967) Potentiation of anticoagulant effect of warfarin by phenylbutazone. N Engl J Med 276:496–501

    Article  PubMed  CAS  Google Scholar 

  • Aguirre C, Rodriguez-Sasiain JM, Calvo R (1994) Decrease in penbutolol protein binding as a consequence of treatment with some alkylating agents. Cancer Chemother Pharmacol 34:86–88

    Article  PubMed  CAS  Google Scholar 

  • Allen LM, Creaven PJ (1974) Binding of a new antitumour agent, thalicorpine to DNA. J Pharm Sci 63:74–475

    Article  Google Scholar 

  • Barre J, Houin G, Brunner RF, Bree F, Tillement JP (1983) Disease induced modifications of drug pharmacokinetics. Int J Clin Pharmacol Res 3:215–226

    PubMed  CAS  Google Scholar 

  • Baruzzi A, Contin M, Perucca E, Albani F, Riva R (1986) Altered serum protein binding of carbamazepine in disease states associated with an increased α1-acid glycoprotein concentration. Eur J Clin Pharmacol 31:85–89

    Article  PubMed  CAS  Google Scholar 

  • Beck WS, Dietzel K, Geisslinger G, Engler H, Vergin H, Brune K (1990) Effects of sodium salicylate on elimination kinetics of indomethacin and bile production in dogs. Drug Metab Dispos 18(6):962–967

    PubMed  CAS  Google Scholar 

  • Belpaire FM, Wynant P, Van Trappen P, Dhont M, Verstraete A, Bogaert MG (1995) Protein binding of propranolol and verapamil enantiomers in maternal and foetal serum. Br J Clin Pharmacol 39:190–193

    PubMed  CAS  Google Scholar 

  • Bergrem H, Ritland S, Opendal I, Bergran A (1983) Prednisolone pharmacokinetics and protein binding in patients with portosystemic shunt. Scand J Gastroenterol 18:273–276

    Article  PubMed  CAS  Google Scholar 

  • Bigger JT (1979) The quinidine-digoxin interaction. What do we know about it? N Engl J Med 301:779–781

    Article  PubMed  CAS  Google Scholar 

  • Bree F, Urien S, Nguyen P, Riant P, Albengres E, Tillement JP (1990) A re-evaluation of the HSA-piroxicam interaction. Eur J Drug Metab Pharmacol 15 (4):303–307

    Article  CAS  Google Scholar 

  • Brodie LMJ, Boobis D (1978) The effect of chronic alcoholic ingestion and alcoholic liver disease on binding of drugs to serum proteins. Eur J Clin Pharmacol 13:435–438

    Article  Google Scholar 

  • Calvo R, Carlos R, Erill S (1982) Effects of carbamylation of plasma proteins and competitive displacers on drug binding in uraemia. Pharmacology 24:248–252

    Article  PubMed  CAS  Google Scholar 

  • Caplin JL, Johnston A, Hamer J, Camm AJ (1985) The acute changes in serum binding of disopyramide and flecainide after myocardial infarction. Eur J Clin Pharmacol 28:253–255

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti SK (1978) Cooperativity of warfarin binding with human serum albumin induced by free fatty acid anion. Biochem Pharmacol 27:739–743

    Article  PubMed  CAS  Google Scholar 

  • Christensen LK, Hansen JM, Kristensen M (1963) Sulphaphenazole-induced hypoglycaemic attacks in tolbutamide-treated diabetics. Lancet II:1298–1301

    Article  Google Scholar 

  • Craig WA, Evenson MA, Ramgopal V (1976) The effect of uraemia, cardiopulmonary bypass and bacterial infection on serum protein binding. In: Benet (ed) The effect of diseases states on drug pharmacokinetics. Am Pharm Assoc, Washington, pp 125–136

    Google Scholar 

  • Crooks MJ, Brown KF (1974) The binding of sulphonylureas to serum albumin. J Pharm Pharmacol 26:304–311

    Article  PubMed  CAS  Google Scholar 

  • D’Arcy PF, McElnay JC (1982) Drug interactions involving the displacement of drugs from plasma protein and tissue binding sites. Pharmacol Ther 17:211–220

    Article  PubMed  Google Scholar 

  • Dasgupta A, Jaques M (1994) Reduced in vitro displacement of valproic acid from protein binding by salicylate in uremic sera compared with normal sera. Role of uremic compounds. Am J Clin Path 101:349–353

    PubMed  CAS  Google Scholar 

  • David BM, Ilett KF, Whitford EG, Stenhouse NS (1983) Prolonged variability in plasma protein binding of disopyramide after acute myocardial infarction. Br J Clin Pharmacol 15:435–441

    PubMed  CAS  Google Scholar 

  • Davis DR, Yeary RA (1975) Bilirubin binding to hepatic Y and Z protein (Ligandin): tissue bilirubin concentration in phenobarbital treated Gunn rat. Proc Soc Exp Biol Med 148:9–13

    PubMed  CAS  Google Scholar 

  • De Sante KA, Dittert LW, Stavchansky S, Doluisio JT (1980) Influence of sulfaethidole on the human pharmacokinetics of dicloxacillin. J Clin Pharmacol 20:535–542

    Google Scholar 

  • Desmond PV, Roberts RK, Wood AJJ, Dunn GD, Wilkinson GR, Schenker S (1980) Effect of heparin administration on plasma binding of benzodiazepines. Br J Clin Pharmacol 9:171–175

    PubMed  CAS  Google Scholar 

  • Doering W (1979) Quinidine-digoxin interaction: pharmacokinetics, underlying mechanism and clinical implications. N Engl J Med 301:400–404

    Article  PubMed  CAS  Google Scholar 

  • Doherty JE, Perkins WH, Flanigan WJ (1967) The distribution and concentration of tritiated digoxin in human tissues. Ann Int Med 66:116–124

    PubMed  CAS  Google Scholar 

  • Ferrazzini G, Klein J, Sulh H, Chung D, Griesbrecht E, Koren G (1990) Interaction between trimethoprim-sulfamethoxazole and methotrexate in children with leukemia. J Pediatr 117(5):823–826

    Article  PubMed  CAS  Google Scholar 

  • Fiset C, Valee F, LeBel M, Gergeron MG (1986) Protein binding of ceftriaxone: comparison of three techniques of determination and the effect of 2- hydroxybenzoylglycine, a drug binding inhibitor in uraemia. Ther Drug Monit 8:483–489

    Article  PubMed  CAS  Google Scholar 

  • Fitchl B, Meister W, Schmied R (1983) Serum protein binding of drugs is not altered in patients with severe chronic cardiac failure. Int J Clin Pharmacol Ther Toxicol 21:241–244

    Google Scholar 

  • Frey FJ, Frey BM (1984) Altered plasma protein binding of prednisolone in patients with the nephrotic syndrome. Am J Kidney Dis 3:339–348

    PubMed  CAS  Google Scholar 

  • Friel PN, Leal KW, Wilensky AJ (1979) Valproic acid-phenytoin interaction. Ther Drug Monit 1:243–248

    Article  PubMed  CAS  Google Scholar 

  • Gatti G, Grema F, Attardo-Parrinello G, Frantion P, Aguzzi F, Perucca E (1987) Serum protein binding of phenytoin and valproic acid in insulin-dependent diabetes mellitus. Ther Drug Monit 9:389–391

    Article  PubMed  CAS  Google Scholar 

  • Giacomini KM, Giacomini JC, Blaschke TF (1980) Absence of effect of heparin on the binding of prazosin and phenytoin to plasma proteins. Biochem Pharmacol 29:3337

    Article  PubMed  CAS  Google Scholar 

  • Giacomini KM, Massoud N, Wong FM, Giacomini JC (1984) Decreased binding of verapamil to plasma proteins in patients with liver disease. J Cardiovase Pharmacol 6:924–928

    Article  CAS  Google Scholar 

  • Grainger-Rousseau TJ, McElnay JC, Collier PS (1989) The influence of disease on plasma protein binding of drugs. Int J Pharm 54:1–13

    Article  CAS  Google Scholar 

  • Grossman SH, Davis D, Kitchell BB, Shand DG, Routledge PA (1982) Diazepam and lidocaine plasma protein binding in renal disease. Clin Pharmacol Ther 31:350–357

    Article  PubMed  CAS  Google Scholar 

  • Gugler R, Mueller G (1978) Plasma protein binding of valproic acid in healthy subjects and in patients with renal disease. Br J Clin Pharmacol 5:441–446

    PubMed  CAS  Google Scholar 

  • Hager WD, Fenster P, Mayersohn M, Perrier D, Graes P, Marcus FI, Goldman S (1979) Digoxin-quinidine interaction. N Engl J Med 300:1238–1241

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa T, Hara K, Hata S (1994) Binding of dorzolamide and its metabolite, N-deethylated dorzolamide, to human erythrocytes in vitro. Drug Metab Disposit 22:377–382

    CAS  Google Scholar 

  • Johannessen SI (1992) Pharmacokinetics of valproate in pregnancy: mother-foetus-newborn. Pharm Weekbl (Sei Ed) 14:114–117

    CAS  Google Scholar 

  • Jusko WJ, Gretch M (1976) Plasma and tissue binding of drugs in pharmacokinetics. Drug Metab Rev 5:43,140

    Article  CAS  Google Scholar 

  • Kessler KM, Leech RC, Spann JF (1979) Blood collection techniques, heparin and quinidine protein binding. Clin Pharmacol Ther 25:204–210

    PubMed  CAS  Google Scholar 

  • Kishore K, Raina A, Misra V, Jonas E (1993) Acute verapamil toxicity in a patient with chronic toxicity: possible interaction with ceftriaxone and clindamycin. Ann Pharmacother 27:877–880

    PubMed  CAS  Google Scholar 

  • Knott C, Hamshaw-Thomas A, Reynolds F (1982) Phenytoin-valproate interaction: importance of saliva monitoring in epilepsy. Br Med J 284:13–16

    Article  CAS  Google Scholar 

  • Kober A, Ekman B, Sjoholm I (1978) Direct and indirect determination of binding constants of drug-protein complexes with microparticles. J Pharm Sei 67:107–109

    Article  CAS  Google Scholar 

  • Koch-Weser J (1979) Disopyramide. N Engl J Med 300:957–962

    Article  CAS  Google Scholar 

  • Koch-Weser J, Seilers EM (1976) Binding of drugs to serum albumin (first of twoparts). N Engl J Med 294:311–316

    Article  PubMed  CAS  Google Scholar 

  • Laznicek M, Senius KEO (1986) Protein binding of tolfenamic acid in the plasma from patients with renal and hepatic disease. Eur J Clin Pharmacol 30:591–596

    Article  PubMed  CAS  Google Scholar 

  • Lewis RJ, Trager WF, Chan KK, Breckenridge AK, Orme M, Rowland M, Schary W (1974) Warfarin: stereochemical aspects of its metabolism and the interaction with phenylbutazone. J Clin Invest 53:1607–1617

    Article  Google Scholar 

  • Liegler DG, Henderson ES, Hahn MA, Oliverio VT (1970) The effect of organic acids on renal clearance of methotrexate in man. Clin Pharmacol Ther 10:849–857

    Google Scholar 

  • Lindup WE (1975) Drug-albumin binding. Biochem Soc Trans 3:635,640

    PubMed  CAS  Google Scholar 

  • Lohman JJHM, Merkus FWHM (1987) Plasma protein binding of digitoxin and some other drugs in renal disease. Pharm Weekbl (Sei Ed) 9:75–78

    CAS  Google Scholar 

  • May T, Rambeck B (1990) Fluctuations of unbound and total phenytoin concentrations during the day in epileptic patients on valproic acid comedication. Ther Drug Monit 12:124–128

    Article  PubMed  CAS  Google Scholar 

  • McAuliffe JJ, Sherwin AL, Leppik IE, Fayle SA, Pippenger CE (1977) Salivary levels of anticonvulsants: a practical approach to drug monitoring. Neurology (Minneap) 27:409–413

    CAS  Google Scholar 

  • McElnay JC, D’Arcy PF (1980) Displacement of albumin-bound warfarin by antiinflammatory agents in vitro. J Pharm Pharmacol 32:709–711

    Article  PubMed  CAS  Google Scholar 

  • McElnay JC, D’Arcy PF (1983) Protein binding displacement interactions and their clinical importance. Drugs 25:495–513

    Article  PubMed  CAS  Google Scholar 

  • McElnay JC, Sidahmed AM, D’Arcy PF, McQuade RD (1985) Chloroquine-digoxin interaction. Int J Pharm 26:267–274

    Article  CAS  Google Scholar 

  • McGowan FX, Reiter MJ, Pritchett EI, Shand DG (1982) Verapamil plasma binding: relationship to α1-acid glycoprotein and drug efficacy. Clin Pharmacol Ther 33:485–490

    Article  Google Scholar 

  • O’Byrne PO, O’Connor P, Feely J (1988) Plasma protein binding of lignocaine and warfarin in non-insulin dependent diabetes mellitus. Br J Clin Pharmacol 26: 648

    Google Scholar 

  • Øie S (1986) Drug distribution and binding. J Clin Pharmacol 26:583–586

    PubMed  Google Scholar 

  • O’Reilly RA (1971) Interaction of several coumarin compounds with human and canine plasma albumin. Mol Pharmacol 7:209–218

    PubMed  Google Scholar 

  • O’Reilly RA (1980) Stereoselective interaction of trimethoprim-sulfamethoxazole with the separated enantiomorphs of racemic warfarin in man. N Engl J Med 303:33–36

    Article  Google Scholar 

  • Paxton JW, Briant RH (1984) a 1acid glycoprotein concentrations and propranolol binding in elderly pateints with acute illness. Br J Clin Pharmacol 18:806,810

    PubMed  CAS  Google Scholar 

  • Perrin A, Milano G, Thyss A, Cambon P, Schneider M (1990) Biochemical and pharmacological consequences of the interaction between methotrexate and ketoprofen in the rabbit. Br J Cancer 62:736–741

    Article  PubMed  CAS  Google Scholar 

  • Perucca E, Hebdige S, Frigo GM, Gatti G, Lecchini S, Crema A (1980) Interaction between phenytoin and valproic acid: plasma protein binding and metabolic effects. Clin Pharmacol Ther 28:779–789

    Article  PubMed  CAS  Google Scholar 

  • Perucca E, Ruprah M, Richens A (1981) Altered drug binding to serum proteins in pregnant women: therapeutic relevance. J R Soc Med 74:422–426

    PubMed  CAS  Google Scholar 

  • Piafsky KM (1980) Disease induced changes in the plasma binding of basic drugs. Clin Pharmacokinet 5:246–262

    Article  PubMed  CAS  Google Scholar 

  • Piafsky KM, Borga O, Odar-Cederlof L, Johansson C, Sjovqist F (1978) Increased plasma protein binding of propanolol and chlorpromazine mediated by disease induced elevations of plasma a1-acid glycoprotein. N Engl J Med 299:1435–1439

    Article  PubMed  CAS  Google Scholar 

  • Pinkard RN, Hawkins D, Farr RS (1973) The infleunce of acetylsalicylic acid on the binding of acetrizote to human albumin. Ann New York Acad Sci 226:341–354

    Article  Google Scholar 

  • Pisani FD, Di Perri RG (1981) Intravenous valproate: effects on plasma and saliva phenytoin levels. Neurology 31:467–470

    PubMed  CAS  Google Scholar 

  • Plumbridge TW, Aarons LJ, Brown JR (1978) Problems associated with analysis and interpretation of small molecule/macromolecule binding data. J Pharm Pharmacol 30:69–74

    Article  PubMed  CAS  Google Scholar 

  • Pond SM, Birkett DJ, Wade DN (1977) Mechanisms of inhibition of tolbutamide metabolism: phenylbutzone, oxphenbutazone, sulphaphenazole. Clin Pharmacol Ther 22:573–579

    PubMed  CAS  Google Scholar 

  • Powell-Jackson PR (1977) Interaction between azapropazone and warfarin. Br Med J 1:1193–1194

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JF, O’Neill PJ, Affrime MB, Lowenthal DT (1983) Influence of uraemia, haemodialysis and nonesterified fatty acids on zomepirac plasma protein binding. Clin Pharmacol Ther 34:681–688

    Article  PubMed  CAS  Google Scholar 

  • Reiffel JA Leahey EB Drusin RE Heissenbuttel RH, Lovejoy W, Bigger JT (1979) A previously unrecognised drug interaction between quinidine and digoxin. Clin Cardiol 2:40–42

    PubMed  CAS  Google Scholar 

  • Rolan PE (1994) Plasma protein binding displacement interactions — why are they still regarded as clinically important? Br J Clin Pharmacol 37:125–128

    PubMed  CAS  Google Scholar 

  • Rothschild MA, Oratz M, Schreiber SS (1973) Albumin metabolism. Gastroenterol 64:324–337

    CAS  Google Scholar 

  • Rowland M (1980) Plasma protein binding and therapeutic drug monitoring. Ther Drug Monit 2:29–37

    Article  PubMed  CAS  Google Scholar 

  • Rowland M, Tozer TN (1995) In: Clinical pharmacokinetics, concepts and applications. Williams and Wilkins, Philadelphia, pp 270–289

    Google Scholar 

  • Salazar-Bookaman MM (1994) Relevance of drug-melanin interactions to ocular pharmacology and toxicology. J Ocul Pharmacol 10:217–239

    Article  PubMed  CAS  Google Scholar 

  • Scatchard G (1949) The attractions of protein for small molecules and ions. Ann NY Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  • Sellers EM, Koch-Weser J (1970) Potentiation of warfarin induced hypopro-thrombinemia by chloral hydrate. N Engl J Med 283:827–831

    Article  PubMed  CAS  Google Scholar 

  • Shaklai N, Garlick RL, Bunn HF (1984) Nonenzymatic glycosylation of human serum albumin alters its conformation and function. J Biol Chem 259:3812–3817

    PubMed  CAS  Google Scholar 

  • Somani P, Simon V, Gupta RK, King P, Shapiro RS, Stockard H (1984) Lorainide kinetics and protein binding in patients with end-stage renal disease. Int J Clin Pharmacol Ther Toxicol 223:121–125

    Google Scholar 

  • Stewart CF, Fleming RA, Germain BF, Seleznick MJ, Evans WE (1991) Aspirin alters methotrexate disposition in rheumatoid arthritis patients. Arthritis Rheum 34:1514–1520

    Article  PubMed  CAS  Google Scholar 

  • Tillement JP (1980) Plasma binding of drugs. Pharm Int 1:64–65

    CAS  Google Scholar 

  • Tillement JP, Lhoste F, Gidicelli JF (1978) Disease and drug protein binding. Clin Pharmacokinet 3:144–154

    Article  PubMed  CAS  Google Scholar 

  • Tiula E, Elfving S (1987) Serum protein binding of phenytoin, diazepam and propranolol in age-related decrease in renal function. Ann Clin Res 129:163–169

    Google Scholar 

  • Tiula E, Neuvonen PJ (1986) Effect of total drug concentration on the free fraction in uraemic sera. Ther Drug Monit 8:27–31

    Article  PubMed  CAS  Google Scholar 

  • Toon S, Low L, Gibaldi M, Trager WF, O’Reilly RA, Motley ChH (1986) The warfarin-sulphinpyrazone interaction: stereochemical considerations. Clin Pharmacol Ther 39:15–24

    Article  PubMed  CAS  Google Scholar 

  • Trnavska Z, Krejocova H, Tkaczykovam, Salcmanova Z, Elis J (1991) Pharmacokinetics of lamotrigine (Lamictal) in plasma and saliva. Eur J Drug Metab Pharmacokin 3:211–215

    Google Scholar 

  • Webb D, Buss DC, Fifield R, Bateman DN, Routledge PA (1986) The plasma protein binding of metoclopramide in health and renal disease. Br J Clin Pharmacol 21:334–336

    PubMed  CAS  Google Scholar 

  • Wood M, Shand DG, Wood AJ (1979a) Altered drug binding due to use of indwelling heparinized cannulas (heparin lock) for sampling. Clin Pharmacol Ther 25:103–107

    PubMed  CAS  Google Scholar 

  • Wood M, Shand DG, Wood AJ (1979b) Propranolol binding in plasma during cardiopulmonary bypass. Anesthesiol. 51:512–516

    Article  CAS  Google Scholar 

  • Zarowitz B, Shlom J, Eichenhorn MS, Popovich J (1985) Alternations in theophylline protein binding in acutely ill patients ands COPD. Chest 87:766–769

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McElnay, J.C. (1996). Drug Interactions at Plasma and Tissue Binding Sites. In: D’Arcy, P.F., McElnay, J.C., Welling, P.G. (eds) Mechanisms of Drug Interactions. Handbook of Experimental Pharmacology, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61015-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61015-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64658-4

  • Online ISBN: 978-3-642-61015-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics