Skip to main content

Mechanisms of Drug-Induced Cholestasis

  • Chapter
Drug-Induced Hepatotoxicity

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 121))

Abstract

Cholestasis means stagnation of bile, and includes biochemical, morphological, and physiological features. Clinically determined signs and symptoms result from accumulation in blood of compounds normally excreted in bile, such as bilirubin, bile acids, cholesterol, alkaline phosphatase,5’-nucleotidase,γ-glutamyltranspeptidase,leucine amino peptidase, lipoprotein X. and immunoglobulin. The response of these compounds and the time course for elevation in serum varies after bile duct legation (KAPLAN et al. 1979: FREDERIKS et al. 1990) and after different homeostatic toxins (KEEFFE et al.1979). Hyperbilirubinemia in combination with elevated serum alkaline phosphataseis typically a reliable laboratory parameter, and determination of serum bile acid concentration has been proposed as a semi quantitative measure of cholestasis (BERRY and REICHEN 1983). Cholestasis may be definedmorphologically as visible accumulation of bile pigments in the canaliculi andhepatocytes, dilation of the canalicular space with a reduction of microvilli,feathery degeneration, accumulation of copper, and Mallory body-like cytoplasmicinclusions. Finally, the simplest functional definition of cholestasis is adecrease in bile flow. Cholestasis can be due to either a failure to secrete bile(intrahepatic) or to a mechanical obstruction (extrahepatic cholestasis) of thebile ducts. Laboratory tests may reflect the severity of cholestasis, but they donot identify the etiology of the disorder or distinguish between extra- andintrahepatic forms. Additional information on cholestasis may be found elsewhere(ZYSSET and REICHEN 1988: REICHEN and SIMON 1988: KING and BLITZER 1990: VORE 1991: FEUER and DIFONZO 1992: FALLON et al. 1993). Numerousconsult other comprehensive reviews (ZIMMERMAN and LEWIS 1987: HORSMANS and HARVENGT 1991). A recent issue of Seminars in Liver Diseases was devotedexclusively to cholestasis (LESTER 1993). This chapter will present potentialmechanisms by which chemicals can induce cholestasis and ten overview severalknown cholestatic agents. one problem with each of the mechanismsdiscussed is that it is not known whether any of these changes is a primarymechanism or a secondary consequence of cholestasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abernathy CO. Zimmerman HJ. Ishak KG. Utili R. Gillespie J. (1992) Drug-inducedcholestasis in the perfused rat liver and its reversal by tauroursodeoxycholate: anultrastructural study. Proc Soc Exp Biol Med 199:54–58

    PubMed  CAS  Google Scholar 

  • Accatino L, Contreras A, Berdichevksy E, Quintana C (1981) The effect of completebiliary obstruction on bile secretion. J Lab Clin Med 97:525–534

    PubMed  CAS  Google Scholar 

  • Adinolfi LE. Utili R.Gaeta GB, Abernathy CO, Zimmerman HJ (1984) Cholestasisinduced by estradiol-17β-D-glucuronide: mechanisms and prevention by sodiumtaurocholate. Hepatology 4:30–37

    Article  PubMed  CAS  Google Scholar 

  • Akerboom TP, Bilzer M, Sies H (1984) Relation between glutathione redox changesand biliary excretion of taurocholate in the perfused rat liver. J Biol Chern 259:5838–5843

    CAS  Google Scholar 

  • Anwer MS (1991) Anatomy and physiology of bile formation. In: Siegers CP, Watkins JB III (eds) Progress in pharmacology and clinical pharmacology: biliary excretion of drugs and other chemicals. Fischer Stuttgart, pp 3–23

    Google Scholar 

  • Anwer MS, Engleking LR, Nolan K, Sullivan D. Zimniak P (19SS) Hepatic activity ofisolated rat hepatocytes. Hepatology 8:887–891

    Article  Google Scholar 

  • Arias IM (1963) Effects of a plant acid (icterogenin) and certain anabolic steroids onthe hepatic metabolism of bilirubin and sulfobromophthalein (BSP). Ann NY Acad Sci 104:1014–1025

    CAS  Google Scholar 

  • Arias IM (1993) Cyclosporin, the biology of the canaliculus, and cholestasis. Gastroenterology 104:1558–1560

    PubMed  CAS  Google Scholar 

  • Arias IM, Forgac M (1984) The sinusoidal domain of the plasma membrane of rathepatocytes contains an amiloride-sensitive Na+/H+ antiport. J Biol Chem 259:5406–5408

    PubMed  CAS  Google Scholar 

  • Arias IM, Adachi Y, Tran T (1986) Ethinylestradiol cholestasis: a disease of thesinusoidal domain of hepatocyte plasma membrane. Hepatology 3:872 (abstract)

    Google Scholar 

  • Arias IM, Che M, Gatmaitman Z, Leveille C, Nishida T, St Pierre M (1993) The biology of the canaliculus, 1993. Hepatology 17:318–329

    Article  PubMed  CAS  Google Scholar 

  • Avner DL, Larsen R, Berenson MM (1983) Inhibition of liver surface membrane Na+,K+-adenosine triphosphatase,Mg+2-adenosine triphosphatase and 5’-nucleotidaseactivities by protoporphyrin. Observations in vitro and in the perfused rat liver.Gastroenterology 85:700–706

    CAS  Google Scholar 

  • Auansakul AC, Yore M (1982) The effect of pregnancy and estradiol-17β treatment onthe biliary transport maximum of dibromosulfophthalein, andtheglucuronideconjugates of 5- isolated perfused rat liver. Drug Metab Dispos 10:344–349

    PubMed  CAS  Google Scholar 

  • Ayotte P, Plaa GL (1986) Modification of biliary tree permeability in rats treated with a manganese-bilirubin combination. Toxicol Appl Pharmacol 84:295–303

    Article  PubMed  CAS  Google Scholar 

  • Ayotte P, Plaa GL (1988) Biliary excretion in Sprague-Dawley and Gunn rats duringmanganese-bilirubin-induced cholestasis. Hepatology 8:1069–1078

    Article  PubMed  CAS  Google Scholar 

  • Back P (1976) Bile acid glucuronide I, Isolation and identification of a chenodeoxycholicacid glucuronide from human plasma in intrahepatic cholestasis. ZPhysiol Chem 357:213–217

    CAS  Google Scholar 

  • Bajwa RS, Fujimoto JM (1983) Effect of colchicine and S,S,S-tributylphosphorotrithioate (DEF) on the biliary excretion of sucrose, mannitol and horse radish peroxidase in the rat. Biochem Pharmacol 32:85–90

    Article  PubMed  CAS  Google Scholar 

  • Baker TS, Jennison KM, Kellie AE (1979) The direct radioimmunoassay of oestrogen glucuronides in human female urine. Biochem J 177:729–738

    PubMed  CAS  Google Scholar 

  • Balistreri WF, Zimmer L, Suchy FJ, Bove KE (1984) Bile salt sulfotransferase: alterationsduring maturation and non-inducibility during substrate ingestion. J Lipid Res 25:228–235

    PubMed  CAS  Google Scholar 

  • Ballatori N, Truong AT (1990) Cholestasis, altered junctional permeability, and inversechanges in sinusoidal and biliary glutathione release by vasopressin and epinephrine. Mol Pharmacol 38:64–71

    PubMed  CAS  Google Scholar 

  • Ballatori N, Jacob R, Boyer JL (1986) Intrabiliary glutathione hydrolysis. A source of glutamate in bile. J Biol Chern 261:7860–7865

    CAS  Google Scholar 

  • Barnwell SG, Lowe PJ, Coleman R (1984) The effects of colchicine on secretion intobile of bile salts, phospholipids, cholesterol and plasma membrane enzymes: bile salts are secreted unaccompanied by phospholipids and cholesterol, Biochem J 220:723–731

    PubMed  CAS  Google Scholar 

  • Bear CE, Petrunka CN, Strasberg SM (1985) Evidence for a channel for the electrogenic transport of chloride ion in the rat hepatocyte. Hepatology 5:383–391

    Article  PubMed  CAS  Google Scholar 

  • Berr F, Simon FR, Reichen J (1984) Ethinylestradiol impairs bile salt uptake and NaK pump function of rat hepatocytes. Am J Physiol 247:G437-G443

    Google Scholar 

  • Berry W, Reichen J (1983) Bile acid metabolism: its relation to clinical disease. Semin Liver Dis 3:330–340

    Article  PubMed  CAS  Google Scholar 

  • Billington D, Evans CE, Godfrey PP (1980) Effects of bile salts on the plasma membranes of isolated rat hepatocytes. Biochem J 188:321–327

    PubMed  CAS  Google Scholar 

  • Blitzer BL, Boyer JL (1978) Cytochemical localization of Na,K-ATPase in the rat hepatocyte. J Clin Invest 62: 1104–1108

    Article  Google Scholar 

  • Boelsterli UA, Rakhit G, Balazs T (1983) Modulation by S-adenosyl-L-methionineof hepatic Na,K-ATPase membrane fluidity, and bile flow in rats with ethinylestradiol-induced cholestasis. Hepatology 3:12–17

    Article  PubMed  CAS  Google Scholar 

  • Bradley SE, Herz R (1978)Permselectivity of biliary canalicular membrane in rats -clearance probe analysis.Am J Physiol 235:E570-E576

    PubMed  CAS  Google Scholar 

  • Brock WJ, Vore M (1984) The effect of pregnancy and treatment with estradiol-17β onthe transport of organic anions into isolated rat hepatocytes. Drug Metab Dispos 13:695–699

    Google Scholar 

  • Brouwer KLR, Durham S, Vore M (1987) Multiple carriers for hepatocytes. Mol Pharmacol 32:519–523

    PubMed  CAS  Google Scholar 

  • Bushman E, Arceci RJ, Croop JM, Che M, Arias IM, Gousman DE, Gros P (1992)Mouse mdr2 encodes P-glycoprotein expressed in the bile canalicular membrane as determined by isoform specific antibodies. J Biol Chem 267:18093–18099

    Google Scholar 

  • Cantley LC (1981) Structure and mechanism of the Na,K-ATPase. Curr Top Bioenerget 11:201–237

    CAS  Google Scholar 

  • Carpenter-Deyo L, Marchand DH, Jean PA, Roth RA, Reed DJ (1991) Involvementof glutathione in a-naphthylisothiocyanate (ANIT) metabolism and toxicity to isolated hepatocytes, Biochem Pharmacol 42:2171–2180

    Article  PubMed  CAS  Google Scholar 

  • Chao YS, Windler EE, Chen GC, Havel RJ (1979) Hepatic catabolism of rat and human lipoproteins in rats treated with 17 α-ethinyl estradiol. J Biol Chem 254:11360–11366

    PubMed  CAS  Google Scholar 

  • Coleman R (1987) Biochemistry of bile secretion. Biochem J 244:249–261

    PubMed  CAS  Google Scholar 

  • Coleman R, Kan KS (1990) Oestradiol 17β-g1ucuronide and tight junctional permeabilitv increase. Biochem J 266:622

    PubMed  CAS  Google Scholar 

  • Colerrian R, Rahman K (1992) Lipid flow in bile formation. Biochim Biophys Acta 1125:113–133

    Google Scholar 

  • Combettes L, Dumont M, Berthon B, Erlinger S, Claret M (1988) Release of calcium from the endoplasmic reticulum by bile acids in rat liver cells. J Biol Chem 263:2299–2303

    PubMed  CAS  Google Scholar 

  • Connolly AK, Price SC, Connelly JC, Hinton RH (1988) Early changes in bile ductlining cells and hepatocytes in rats treated with alpha-naphthylisothiocyanate. Toxicol Appl Pharmacol 93:208–219

    Article  PubMed  CAS  Google Scholar 

  • Cooper RA, Garcia FA, Trey C (1972) The effect of lithocholic acid on red cellmembranes in vivo. J Clin Invest 79:7–18

    CAS  Google Scholar 

  • Crawford JM, Berken CA, Gollan JL (1988) Role of the hepatocyte microtubular system in the excretion of bile salts and biliary lipid: implications for intracellular vesicular transport. J Lipid Res 29:144–156

    PubMed  CAS  Google Scholar 

  • Dahl CR, Gonzalez MC, Simon FR (1978) Reversal of impaired sulfobromophthalein transport caused by ethinyl estradiol with Triton WR-1339 and Phenobarbital.Gastroenterology 74: 1023–1029

    Google Scholar 

  • Dahm LJ, Roth RA (1991) Protection against alpha-naphthylisothiocyanate-inducedliver injury by decreased hepatic non-protein sulfhydryl content. Biochem Pharmacol 42:1181–1188

    Article  PubMed  CAS  Google Scholar 

  • Dahm LJ, Schultze AE, Roth RA (1990) An antibody to neutrophils attenuates alphanaphthylisothiocyanate-induced liver injury. J Pharmacol Exp Ther 256:412–420

    Google Scholar 

  • Davis RA, Kern F, Showalter R, Sutherland E, Sinensky M, Simon FR (1978) Alterations of hepatic Na+,K+-ATPase and bile flow by estrogen: effects on liver surface membrane structure and function. Proc Natl Acad Sci USA 75:4130–4134

    Article  PubMed  CAS  Google Scholar 

  • DeBroe ME, Roels F, Nouwen EJ, Claeys L, Wieme RJ (1985)Liver plasma membrane:the source of high molecular weight alkaline phosphatase in human serum.Hepatology 5:118–128

    Google Scholar 

  • DeVos R, Desmet V (1981) Morphology of liver eell tight junctions in dhinyl estradiolinduced cholestasis. Pathol Res Praet 171:381–388

    Google Scholar 

  • Diehl AM, Latham P, Boitnott JK, Mann J, Maddrey WC (1984) Cholestatic hepatitisfrom erythromycin ethylsuceinate. Am J Med 76:931–934

    Article  PubMed  CAS  Google Scholar 

  • Drew R, Priestly BG (1979) Choleretic and cholestatie effects of infused bile salts in the rat. Experientia 35:809–811

    Article  PubMed  CAS  Google Scholar 

  • Dubin M, Maurice M, Feldman G, Erlinger S (1978) Phalloidin-induced cholestasis in the rat: relation to changes in microfilaments. Gastroenterology 75:450–455

    PubMed  CAS  Google Scholar 

  • Dubin M, Maurice M, Feldmann G, Erlinger S (1980) Influence of colchicine and phalloidin on bile secretion and hepatic ultrastructure in the rat: possible interaction between microtubules and microfilaments. Gastroenterology 79:646–654

    PubMed  CAS  Google Scholar 

  • Duffy MC, Blitzer BL, Boyer JL (1983) Direct determination of the driving forces fortaurocholate uptake into rat liver plasma membrane vesicles. J Clin Invest 72:1470–1481

    Article  PubMed  CAS  Google Scholar 

  • Durham S, Vore M (1986) Taurocholate and steroid glucuronides: mutual protectionagainst cholestasis in the isolated perfused rat liver, J Pharmacol Exp Ther 237:490–495

    PubMed  CAS  Google Scholar 

  • Easter DW, Wade JB, Boyer JL (1983)Structural integrity of hepatocyte tight junctions. 1 Cell Biol 96:745–749

    Article  CAS  Google Scholar 

  • Elias E, Boyer JL (1979) Chlorpromazine and its metabolites alter polymerization and gelation of actin. Science 206:1404–1406

    Article  PubMed  CAS  Google Scholar 

  • Elias E, Iqbal S (1983) Increased tight junction permeability: a possible mechanism of estrogen cholestasis. Eur J Clin Invest 13:383–390

    Article  PubMed  CAS  Google Scholar 

  • Elias E, Hruban Z, Wade JB, Boyer JL (1980) Phalloidin-induced cholestasis: a microfilament-mediated change in junctional complex permeability. Proc Natl Acad Sci USA 77:2229–2233

    Article  PubMed  CAS  Google Scholar 

  • Erlinger S (1993) Secretion of bile. In: Schiff L, Schiff ER (eds) Diseases of the liver,vol 1, 7th edn. Lippincott, Philadelphia, pp 85–107

    Google Scholar 

  • Evans WH, Kremmer T, Culvenor JG (1976) Role of membranes in bile formation comparison of the composition of bile and a liver bile-canalicular plasma membrane subfraction. Biochem J 154:589–595

    PubMed  CAS  Google Scholar 

  • Fallon MB, Anserson JM, Boyer JL (1993) Intrahepatic cholestasis. In: Shiff L, SchiffER (eds) Diseases of the liver, vol 1, 7th edn. Lippincott, Philadelphia, pp 343–361

    Google Scholar 

  • Farrell GC, Duddy SK, Kass GEN, Liopis J, Gahm A, Orrenius S (1990) Release ofCa2+ from the endoplasmic reticulum is not the mechanism for bile acid-induced cholestasis and hepatotoxicity in the intact rat liver. J Clin Invest 85:1255–1259

    Article  PubMed  CAS  Google Scholar 

  • Fernandez E, Munoz ME, Roman ID, Galan AI, Gonzalez-Buitrago JM, Jimenez R. (1992) Cyclosporin A-induced cholestasis in the rat. Beneficial effects of S-adenosyl-Lmethionine. Drug Invest 4 [Suppl 4]:54–63

    Google Scholar 

  • Feuer G, DiFonzo CJ (1992) Intrahepatic cholestasis: a review of biochemical-pathological mechanisms. Drug Metab Drug Interact 10:1–161

    Article  CAS  Google Scholar 

  • Forker EL (1969) The effect of estrogen on bile formation in the rat. J Clin Invest 48:654–663

    Article  PubMed  CAS  Google Scholar 

  • Fouin-Fortunet H, LeQuernec L, Erlinger S, Loubours F, Colin R (1982) Hepaticalterations during total parenteral nutrition in patients with inflammatory boweldisease: a possible consequence of lithocholate toxicity. Gastroenterology 82:932–937

    PubMed  CAS  Google Scholar 

  • Frederiks WM, Van Noor Den CLF, Aronson DC, Marx F, Bosch KS, Jonges GN, Vogels IMC, James J (1990) Quantitative changes in acid phosphatase, alkaline phosphatase and 5’-nucleotidase activity in rat liver after experimentally induced cholestasis. Liver 10:158–166

    PubMed  CAS  Google Scholar 

  • French SW, Davies PL (1975) Ultrastructural localization of actin-like filaments in rathepatocytes. Gastroenterology 68:765–774

    PubMed  CAS  Google Scholar 

  • Frezza MG, Pozzato G, Chiesa L, Stramentinoli G, DiPadova C (1984) Reversal ofintrahepatic cholestasis of pregnancy in women after high doses of S-adenosyl-Lmethionine. Hepatology 4:274–278

    Article  PubMed  CAS  Google Scholar 

  • Fricker G, Landmann L, Meier PJ (1988) Ethinylestradiol (EE) induced structural and functional alterations of rat liver plasma membranes and their reversal by Sadenosylmethionine (SAMe) in vitro. Hepatology 8:1224 (abstract)

    Google Scholar 

  • Frimmer M, Ziegler K (1988) The transport of bile acids in liver cells. Biochim Biophys Acta 947:75–99

    PubMed  CAS  Google Scholar 

  • Gaeta GB, Utili R, Adinolfi LE, Abernathy CO, Giusti G (1985) Characterization of the effects of erythromycin estolate and erythromycin base on the excretory functionof the isolated rat liver. Toxicol Appl Pharmacol 80:185–192

    Article  PubMed  CAS  Google Scholar 

  • Galan AI, Roman IS, Munoz ME, Cava F, Gonzalez-Buitrago JM, Jimenez R (1992)Inhibition of biliary lipid and protein secretion by cyclosporine A in the rat, Biochem Pharmacol 44:1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Galeazzi R, Javitt NB (1977) Bile acid excretion: the alternate pathway in the hamster. J Clin Invest 60:693–701

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt R (1984) Participation of microtubules and microfilaments in thetrans cellular biliary secretion of immunoglobulin A in primary cultures of rat hepatocytes. Experientia 40:269–271

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith MA, Huling S, Lones AL, (1983) Hepatic handling of bile salts and protein in the rat during intrahepatic cholestasis. Gastroenterology 84:978–986

    PubMed  CAS  Google Scholar 

  • Graf L, Gautam A, Boyer JL (1984) Isolated rat hepatocyte couplets: a primary secretoryunit for electrophysiologic studies of bile secretory function. Proc Natl Acad Sci USA 81:6516–6520

    Article  PubMed  CAS  Google Scholar 

  • Gumucio JJ, Valdivieso VD (1971) Studies on the mechanism of ethinylestradiolimpairment of bile flow and bile salt excretion in the rat. Gastroenterology 61 :339–344

    PubMed  CAS  Google Scholar 

  • Hardison WGM, Hatoff DE, Miyai K, Weiner RG (1981) Nature of bile acid maximum secretory rate in the rat, Am J Physiol 241:G337–G343

    PubMed  CAS  Google Scholar 

  • Hardison WGM, Bellentani S, Heasley V, Shellhammer D (1984) Specificity of an Na+-dependenttaurocholate transport site in isolated rat hepatocytes, Am J Physiol 246: G477–G483

    PubMed  CAS  Google Scholar 

  • Hatoff DE, Hardison WGM (1979) Induced synthesis of alkaline phosphatase by bileacids in rat liver cell culture. Gastroenterology 77:1062–1067

    PubMed  CAS  Google Scholar 

  • Hatoff DE, Hardison WGM (1981) Bile acids modify alkaline phosphatase inductionand bile secretion pressure after bile duct obstruction in the rat. Gastroenterology 80:666–672

    PubMed  CAS  Google Scholar 

  • Hatoff DE, Toyota N, Wong C, Miller AL, Takeya M, Miyai K (1985) Rat liver alkalinephosphatases Evidence that hepatocyte and portal triad enzymes differ. Dig Dis Sci 30:564–572

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Ng OC, Ma A, Boyer JL (1990) Taurocholate stimulates transcytoticvesicular pathways labelled by horseradish peroxidase in the isolated perfused rat liver. Gastroenterology 99:216–228

    PubMed  CAS  Google Scholar 

  • Hofmann AF (1990) Bile acid secretion, bile flow and biliary lipid secretion in humans. Hepatology 12:17S–25S

    PubMed  CAS  Google Scholar 

  • Horak W, Grabner G, Paumgartner G (1973) Inhibition of bile salt-independent bile formation by indocyanine green. Gastroenterology 64:1005–1012

    PubMed  CAS  Google Scholar 

  • Horsmans Y, Harvengt C (1991) Secondary drug-induced cholestasis with bile duct involvement. Acta Gastroenterol Belg 54:27–33

    PubMed  CAS  Google Scholar 

  • Hubert JJ, Schenk DB, Skelly H, Leffert HL (1986) Rat hepatic (Na+,K+ )-ATPase: α-subunit isolation by immunoaffinity chromatography and structural analysis bypeptide mapping. Biochemistry 25:4156–4163

    Article  PubMed  CAS  Google Scholar 

  • Hugentobler G, Meier PJ (1986) Multispecific anion exchange in basolateral (sinusoidal) rat liver plasma membrane vesicles, Am J Physiol 251 :G656–G664

    PubMed  CAS  Google Scholar 

  • Inoue M, Kinne R, Tran T, Biempica L, Arias IM (1983) Rat liver canalicular plasma membrane vesicles: isolation and topological characterization. J Biol Chern 258:5183–5188

    CAS  Google Scholar 

  • Inoue M, Kinne R, Tran T, Arias IM (1984) Taurocholate transport by rat livercanalicular membrane vesicles Evidence for the presence of an Na-independent transport system. J Clin Invest 73:659–663

    Article  PubMed  CAS  Google Scholar 

  • Iqbal S, Mills CO, Elias E (1985) Biliary permeability during ethinyl estradiol-inducedcholestasis studied by segmented retrograde intrabiliary injections in rats. J Hepatol 1:211–219

    Article  PubMed  CAS  Google Scholar 

  • Ishak KG, Zimmermann HJ (1987) Hepatotoxic effects of the anabolic/androgenicsteroids, Semin Liv Dis 7:230–236IIs

    Article  CAS  Google Scholar 

  • Shikawa T, Muller M, Klunemann C, Schaub T, Keppler D, (1990)ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. J Biol Chern 265: 19279–19286

    Google Scholar 

  • Jaeschke H (1990) The pathophysiological significance of increased tight-junctionalpermeability during oestrogen cholestasis. Biochem J 266:620–621

    PubMed  CAS  Google Scholar 

  • Jaeschke H, Krell H, Pfaff E (1983) No increase in biliary permeability in ethinylestradiol treated rats. Gastroenterology 85:808–814

    PubMed  CAS  Google Scholar 

  • Jaeschke H, Krell H, Pfaff E (1987a) Quantitative estimation of transcellular pathways of biliary sucrose in isolated perfused rat liver. Biochem J 241:635–640

    PubMed  CAS  Google Scholar 

  • Jaeschke H, Trummer E, Krell H (1987b) Increase in biliary permeability subsequent to intrahepatic cholestasis by estradiol valerate in rats. Gastroenterology 93:533–538

    PubMed  CAS  Google Scholar 

  • Joseph LD, Yousef IM, Plaa GL, Sharkawi M (1992) Potentiation of lithocholic-acidinduced cholestasis by methyl isobutyl ketone. Toxicol Lett 61 :39–47

    Article  PubMed  CAS  Google Scholar 

  • Jung W, Gebhardt T, Robenek H, (1982) Primary cultures of rat hepatocytes as a model system for canalicular development, biliary secretion and intrahepatic cholestasis.II. Taurolithocholate-induced alterations of canalicular morphology and of the distribution of filipin-cholesterol complexes, Eur J Cell Biol 29:77–82

    PubMed  CAS  Google Scholar 

  • Kacich RL, Renston RH, Jones AL (1983) Effects of cytochalasin D and colchicine on the uptake, translocation and biliary secretion of horseradish peroxidase and [14C]taurocholate in the rat. Gastroenterology 85:385–394

    PubMed  CAS  Google Scholar 

  • Kadmon M, Kluenemann C, Boehme M, Ishikawa T, Gorgas K, Otto G, HerfarthC, Keppler D (1993) Inhibition by cyclosporin A of adenosine tripho sphatedependenttransport from the hepatocyte into bile. Gastroenterology104:1507 1514

    Google Scholar 

  • Kakis G, Yousef IM (1978) Pathogenesis of lithocholate- and taurolithocholate-induced intrahepatic cholestasis in rats. Gastroenterology 75:595–607

    PubMed  CAS  Google Scholar 

  • Kakis G, Phillips MJ, Youself M, (1980) The respective role of membrane cholesteroland of sodium potassium adenosine triphosphatase in the pathogenesis of lithocholate-induced cholestasis, Lab Invest 43:73–81

    PubMed  CAS  Google Scholar 

  • Kamimoto Y, Gatmaitman Z, Hsu J, Arias IM (1989) The function of Gp170, themulti drug resistance gene product, in rat liver canalicular membrane vesicles. J Biol Chern 264:11693–11698

    CAS  Google Scholar 

  • Kan SK, Monte MJ, Parslow RA, Coleman R (1989) Oestradiol 17β-glucuronide increases tight-junctional permeability in rat liver. Biochem J 261:297–300

    PubMed  CAS  Google Scholar 

  • Kane RE, Chen LJ, Thaler MM (1984) Regulation of bile salt sulfotransferase isoenzymes by gonadal hormones. Hepatology 4:1195–1199

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MM, Kanel GC, Singer JA (1979) Enzyme changes and morphometric analysis of bile ducts in experimental bile duct obstruction. Clin Chim Acta 99:113–119

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MM, Ohkubo A, Quaroni EG, Sze-Tu D (1983) Increased synthesis of rat liver alkaline phosphatase by bile duct ligation. Hepatology 3:368–376

    Article  PubMed  CAS  Google Scholar 

  • Keeffe EB, Scharschmidt BF, Blankenship NM, Ockner RK (1979) Studies of relationships among bile flow, liver plasma membrane Na,K-ATPase, and membrane microviscosity in the rat. J Clin Invest 64:1590–1598

    Article  CAS  Google Scholar 

  • Keeffe EB, Blankenship NM, Scharschmidt BF (1980) Alteration of rat liver plasma membrane fluidity and ATPase activity by chlorpromazine hydrochloride and its metabolites. Gastroenterology 79:222–231

    PubMed  CAS  Google Scholar 

  • King PD, Blitzer PL (1990)Drug-induced cholestasis: pathogenesis and clinical features.Semin Liver Dis 10:316–321

    CAS  Google Scholar 

  • Kirkpatrick RB, Killenberg PG (1980) Effects of ethinylestradiol on enzymes catalyzing bile acid conjugation and sulfation. J Lipid Res 21:895–901

    PubMed  CAS  Google Scholar 

  • Kitamura T, Jansen P, Hardenbrook C, Kamimoto Y, Gatmaitan Z, Arias IM (1990)Defective ATP-dependent bile canalicular transport of organic anions in mutant (TR-) rats with conjugated hyperbilirubinemia. Proc Natl Acad Sci USA 87:3557–3561

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD, Watkins JB III (1984) Mechanisms of bile formation, hepatic uptake and biliary excretion. Pharmacol Rev 36:1–67

    PubMed  CAS  Google Scholar 

  • Klos C, Paumgartner G, Reichen J, (1979)Cation-anion gap and choleretic properties of rat bile. Am J Physiol 236:E434-E440

    Google Scholar 

  • Komoda T, Kumegawa M, Yajima T, Tamura G, Alpers DH, (1984)Induction of rat hepatic and intestinal alkaline phosphatase activity produced by the bile from bileduct ligated animals, Am J Physiol 246:G393-G400

    Google Scholar 

  • Kovanen PT, Brown MS, Goldstein JL (1979) Increased binding of LDL to liver membranes from rats treated with 17-ethinylestradiol. J Biol Chern 254:11367–11373

    CAS  Google Scholar 

  • Kramer W, Bickel U, Buscher HP, Gerok W, Kurz G (1982) Bile salt-bindin polypeptides in plasma membranes of hepatocytes revealed by photoaffinity labelling. Eur J Biochem 129:13–24

    Article  PubMed  CAS  Google Scholar 

  • Kreek MJ, (1987) Female sex steroids and cholestasis, Semin Liver Dis 7:8–23

    Article  PubMed  CAS  Google Scholar 

  • Krell H, Hoke H, Pfaff E, (1982)Development of intrahepatic cholestasis alphanaphthylisothiocyanate in rats, Gastroenterology 82:507–514

    PubMed  CAS  Google Scholar 

  • Kuipers F, Enserink M, Havinga R, van der Steen ABM, Hardonk MJ, Fevery J, VonkRJ, (1988) Separate transport systems for biliary secretion of sulfated and unsulfated bile acids in the rat, J Clin Invest 81:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Kuipers F, Hardonk MJ, Vonk RJ, Van derMeer R, (1992)Bile secretion of sulfatedglycolithocholic acid is required for its cholestatic action in rats. Am J Physiol 262: G267–G273

    PubMed  CAS  Google Scholar 

  • Lagarde S, Elias E, Wade JB, Boyer JL (1981) Structural heterogeneity of hepatocyte “tight” junctions: a quantitative analysis. Hepatology 1:193–203

    Article  PubMed  CAS  Google Scholar 

  • Laperche Y, Launay A, Oudea P, Doulin A, Baraud J (1972) Effects of Phenobarbital and rose bengal on the A TPases of plasma membranes of rat and rabbit liver. Gut 13:920–925

    Article  PubMed  CAS  Google Scholar 

  • Larrey D. Amouyl G, Pessayre D, Degott C, Danne O, Machayekhi JP, Feldman G, Benhamon JP, (1988) Amitriptyline-induced prolonged cholestasis, Gastroenterology 94:200–203

    PubMed  CAS  Google Scholar 

  • Laney D. Berson A, Habersetzer F, Tinel M, Castot A, Babany G, Letteron P,Freneaux E, Loeper J, Dansette P, Pessayre D, (1989) Genetic predisposition todrug hepatotoxicity: role in hepatitis caused by amineptine, a tricyclic antidepressant. Hepatology 10:168–l73

    Article  Google Scholar 

  • Layden TJ, Boyer JL (1975) Scanning electron microscopy of the rat liver. Studies ofthe effect of taurolithocholate and other models of cholestasis. Gastroenterology 69:724–738

    CAS  Google Scholar 

  • Layden TJ, Boyer JL (1976) The effect of thyroid hormone on bile salt-independent bile flow and Na+,K+-ATPase activity in liver plasma membranes enriched in bile canaliculi. J Clin Invest 57:1009–1018

    Article  PubMed  CAS  Google Scholar 

  • Layden TJ, Boyer JL, (1977) Taurolithocholate-induced cholestasis: taurocholate but not dehydrocholate, reverses cholestasis and bile canalicular membrane injury, Gastroenterology 73:120–128

    PubMed  CAS  Google Scholar 

  • Layden TJ, Elias E, Boyer JL (1978) Bile formation in the rat. The role of the pericellular shunt pathway. J Clin Invest 62:1375–1385

    CAS  Google Scholar 

  • Leffert HL, Schenk DB, Hubert JJ, Skelly H, Schumacher M, Ariyasu R, Ellisman M, Kock KS, Keller GA, (1985) Hepatic Na,K-ATPase. A current view of its structure, function, and localization in rat liver as revealed by studies with monoclonalantibodies, Hepatology 5:501–507

    Article  PubMed  CAS  Google Scholar 

  • LeSage G D, Robertson WE, Baumgart MA (1990) Demonstration of vesicular-dependent bile flow in the sucrose-loaded rat. Gastroenterology 99:478–487

    PubMed  CAS  Google Scholar 

  • Lester R, (1993) Foreword. Semin Liver Dis 13:iii–vi

    Article  CAS  Google Scholar 

  • LeThai B, Dumont M, Michel A, Erlinger S, Houssin D (1988) Cholestatic dfect ofcyclosporine in the rat. An inhibition of bile acid secretion. Transplantation 46:510–512

    Google Scholar 

  • Loof L, Wengle B (1982) Enzymatic sulphation of bile salts in man. Bile salt sulfotransferase activity in percutaneous liver biopsy specimens from patients with liver disease, Scand J Gastroenterol 17:69–76

    Article  PubMed  CAS  Google Scholar 

  • Lunzer M, Barnes P, Byth K, O’Halloran M (1986) Serum bile acid concentrationsduring pregnancy and their relationship to obstetric cholestasis. Gastroenterology 91:825–829

    PubMed  CAS  Google Scholar 

  • Mathis U, Karlaganis G, Preisig R (1983) Monohydroxy bile salt sulfates: tauro-3β-lhydroxy-5-cholenoate-3-sulfate induces intrahepatic cholestasis in rats. Gastroenterology 85:674–681

    PubMed  CAS  Google Scholar 

  • McLean-Fletcher S, Pollard RD (1980) Mechanisms of action of cytochalasin Bonactin. Cell 20:329–341

    Article  Google Scholar 

  • Meier PJ (1989) The bile salt secretory polarity of hepatocytes. J Hepatol 9:124–129

    Article  PubMed  CAS  Google Scholar 

  • Meier PJ, Meier-Abt AS, Barrett C, Boyer JL (1984) Mechanisms of taurocholatetransport in canalicular and basolateral rat liver plasma membrane vesicles. J Biol Chern 259:10614–10622

    CAS  Google Scholar 

  • Meier PJ, Knickelbein R, Moseley RH, Dobbins JW, Boyer JL (1985) Evidence for carrier-mediated chloride/bicarbonate exchange in canalicular rat liver plasmamembrane vesicles. J Clin Invest 75:1256–1263

    Article  PubMed  CAS  Google Scholar 

  • Meier PJ, Meier-Abt AS, Boyer JL (1987) Properties of the canalicular bile acid transport system in rat liver. Biochem J 242:465–469

    PubMed  CAS  Google Scholar 

  • Meijer DKF, Vonk RJ, Weitering JG (1978) The influence of various bile salts andsome cholephilic dyes on Na,K- and Mg-activated ATPase of rat liver in relation to cholestatic effects. Toxicol Appl Pharmacol 43:597–612

    Article  PubMed  CAS  Google Scholar 

  • Metz J, Aoki M, Merlo M, Forssman WG (1977) Morphological alterations and functional changes of interhepatocellular junctions induced by bile duct ligation. Cell Tissue Res 182:299–310

    Article  PubMed  CAS  Google Scholar 

  • Meyers M, Slikker W, Pascoe G, Yore M (1980) Characterization of cholestasis induced by estradiol-17B-D-glucuronide in the rat. J Pharmacol Exp Ther 214:87–93

    PubMed  CAS  Google Scholar 

  • Meyers M, Slikker W, Yore M (1981) Steroid D-ring glucuronides: characterization of a new class of cholestatic agents in the rat. J Pharmacol Exp Ther 218:63–73

    PubMed  CAS  Google Scholar 

  • Miner PB, Sutherland E, Simon FR, (1980)Regulation of hepatic sodium plus potassium-activated adenosine triphosphatase activity by glucocorticoids in the rat, Gastroenterology 79:212–221

    PubMed  CAS  Google Scholar 

  • Miyai K, Hardison WGM (1982) Cholestasis induced by scillaren administration, bicarbonate deprivation, or reduced heptic blood flow. Exp Mol Pathol 36:333–346

    Article  PubMed  CAS  Google Scholar 

  • Miyai K, Mayr WW, Richardson AL, (1975) Acute cholestasis induced by lithocholic acid in the rat A freeze-fracture replica and thin section study. Lab Invest 32:527–535

    Google Scholar 

  • Miyai K, Richardson AL, Mayr WW, Javitt NB (1977) Subcellular pathology of ratliver in cholestasis and choleresis induced by bile salts I Effects of lithocholic 3β-hydroxy-5-cholenoic, cholic, and dehydrocholic acids, Lab Invest 36:249–258

    PubMed  CAS  Google Scholar 

  • Mondardini A, Pasquino P, Bernardi P, Aluffi E, Tartaglino B, Mazzucco G, Bonino F, Verne G, Negro F (1993) Propafenone-induced liver injury: report of a case and review of the literature. Gastroenterology 104:1524–1526

    PubMed  CAS  Google Scholar 

  • Montesano R, Gabbiani G, Perrelet A, Orci L (1976) In vivo induction of tight junction proliferation in rat liver. J Cell Biol 68:793–798

    Article  PubMed  CAS  Google Scholar 

  • Moseley RH, Johnson TR, Morrissette LM, (1990) Inhibition of bile acid transport bycyclosporine A in rat liver plasma membrane vesicles, J Pharmacol Exp Ther 253:974–980

    PubMed  CAS  Google Scholar 

  • Nishada T, Gatmaitan Z, Che M, Arias IM (1991) Rat liver canalicular membrane vesicles contain an ATP-dependent bile acid transport system. Proc Natl Acad Sci USA 88:6590–6594

    Article  Google Scholar 

  • Nolan JP (1981) Endotoxin, reticuloendothelial function and liver injury. Hepatology 1:458–465

    Article  PubMed  CAS  Google Scholar 

  • Oda M, Phillips MJ (1977) Bile canalicular membrane pathology in cytochalasin Binduced cholestasis. Lab Invest 37:350–356

    PubMed  CAS  Google Scholar 

  • Oelberg DG, Lester R (1986) Cellular mechanisms of cholestasis. Annu Rev Med 37:297–317

    Article  PubMed  CAS  Google Scholar 

  • Oelberg DG, Dubinsky WP, Adcock EW, Lester R, (1984) Calcium binding by lithocholic acid derivatives, Am l Physiol 247:G112–G115

    CAS  Google Scholar 

  • Okanoue T, Kondo I, Ihrig TJ, French SW (1984) Effect of ethanol and chlorpromazine on transhepatic transport and biliary secretion of horseradish peroxidase. Hepatology 4:253–260

    Article  PubMed  CAS  Google Scholar 

  • Olson JR, Fujimoto JM (1980) Evaluation of hepatobiliary function in the rat by thesegmented retrograde intrabiliary injection technique. Biochem Pharmacol 29:205–211

    Article  PubMed  CAS  Google Scholar 

  • Onishi S, Maeda T, Iwasaki S, Saibara T, Miyamoto T, Miyazaki M. Yamamoto Y, Enzan H, (1991) A biliary protein identified by immunoblotting stimulates proliferationof peripheral blood T lymphocytes in primary biliary cirrhosis, Liver 11:321–328

    PubMed  CAS  Google Scholar 

  • Oshio C, Phillips MJ (1981) Contractility of bile canaliculi: implications for liver function. Science 212:1041–1042

    Article  PubMed  CAS  Google Scholar 

  • Peterson RE, Fujimoto JM (1977) Increased biliary tree permeability produced in rats by hepatoactive agents. J Pharmacol Exp Ther 202:732–739

    PubMed  CAS  Google Scholar 

  • Petzinger E, Frimmer M (1980) Comparative studies on the rat liver cells. Arch Toxicol 44:127–135

    Article  PubMed  CAS  Google Scholar 

  • Phillips MJ, Oda M, Mak E, Fisher MM, Jeejeebhoy KN (1975) Microtilament dysfunction as a possible cause of intrahepatic cholestasis. Gastroenterology 69:48–58

    PubMed  CAS  Google Scholar 

  • Phillips MJ, Oda M, Funatsu K (1978) Evidence for microfilament involvement innorethandrolone-induced intrahepatic cholestasis. Am J Pat hoI 93:729–744

    CAS  Google Scholar 

  • Phillips MJ, Oshio C, Miyairi M, Smith CR (1983) Intrahepatic cholestasis as a canalicular motility disorder. Evidence using cytochalasin. Lab Invest 48:205–211

    PubMed  CAS  Google Scholar 

  • Phillips MJ, Poucell S, Oda M (1986) Biology of disease Mechanisms of cholestasis. Lab Invest 54:593–608

    PubMed  CAS  Google Scholar 

  • Plaa GL. Priestly BG, (1976) Intrahepatic cholestasis induced by drugs and chemicals, Pharmacol Rev 28:207–273

    PubMed  CAS  Google Scholar 

  • Plaa GL. DeLamirande E, Lewittes M, Yousef IM, (1982) Liver cell plasma membranelipids in manganese-bilirubin-induced intrahepatic cho1estasis, Biochem Pharmacol 31:3698–3701

    Article  PubMed  CAS  Google Scholar 

  • Radominska A, Treat S, Little J, (1993) Bile acid metabolism and the pathophysiology of cholestasis, Semin Liver Dis 13:219–234

    Article  PubMed  CAS  Google Scholar 

  • Rahman K, Hammond TG. Lowe PJ, Barnwell SG, Clark B, Coleman R, (1986)Control of biliary phospholipid secretion Effect of continuous and discontinuous infusion of taurocholate on biliary phospholipid secretion, Biochem J 234:421–427

    PubMed  CAS  Google Scholar 

  • Rank J, Wilson DI (1983) Changes in IgA following varying degrees of biliary obstruction in the rat. Hepatology 3:241–247

    Article  PubMed  CAS  Google Scholar 

  • Reichen J, Le M, (1983) Taurocholate, but not taurodehydrocholate. increases biliarypermeability to sucrose, Am J Physiol 245:G651–G655

    PubMed  CAS  Google Scholar 

  • Reichen J, Le M (1985) Taurolithocholate induces cholestasis by altering transcellular but not pericellular biliary permeability. Clin Res 33:97 A

    Google Scholar 

  • Reichen J, Paumgartner G (1977) Relationship between bile flow and Na,K-adenosinetriphosphatase in liver plasma membranes enriched in bile canaliculi. J Clin Invest 60:429–434

    Article  PubMed  CAS  Google Scholar 

  • Reichen J. Paumgartner G, (1979) Inhibition of hepatic Na,K-adenosine triphosphatase in taurolithocholate induced cholestasis in the rat, Experientia 35: 1186–1188

    Article  PubMed  CAS  Google Scholar 

  • Reichen J, Simon FR, (1988)Cholestasis. In: Arias IM, Jakoby WB. Popper H,Schachter D, Shafritz DA (eds) The liver: biology and pathobiology. Raven. New York, pp 1105–1124

    Google Scholar 

  • Reichen J. Berman MD, Berk PO (1981) The role of microfilaments and microtubules in taurocholate uptake by isolated rat liver cells. Biochim Biophys Acta 643:126–133

    Article  PubMed  CAS  Google Scholar 

  • Reichen J, Berr F, Le M, Warren GH, (1985) Characterization of calcium dcprivationinduced cholestasis in the perfused rat liver, Am J Physiol 249:U48–G57

    Google Scholar 

  • Reutz S, Hugentobler G, Meier PJ (1988) Functional reconstitution of the canalicular bile transport system of rat liver. Proc Natl Acad Sci USA 85:6147–6151

    Article  Google Scholar 

  • Reyes H, Simon FR, (1993) Intrahepatic cholestasis of pregnancy: an estrogen disease, Semin Liver Dis 13:289–301

    Article  PubMed  CAS  Google Scholar 

  • Reyes H. Levi AJ. Gatmaitan Z, Arias IM, (1972)Studies on Y ANDZ two hepaticcytoplasmic organic anion-binding proteins effect of drugs chemicals hormones and cholestasis, J Clin Invest 50:2242–2252

    Article  Google Scholar 

  • Reyes H, Ribalta J, Gonzalez MC, Segovia N, Oberhauser E, (1981) Sulfobromophthalein clearance tests before and after ethinyl estradiol administration in women and men with familial history of intrahepatic cholestasis of pregnancy, Gastroenterology 81:226–231

    PubMed  CAS  Google Scholar 

  • Robenek H, Gebhardt R,(1983)Primary cultures of rat hepatocytes as a model system of canalicular developments biliary secretion and intrahepatic cholestasis IV Disintegration of bile canaliculi and disturbance of tight junction formation caused by vinblastine, Eur J Cell Biol 31:283–289

    PubMed  CAS  Google Scholar 

  • Robenek H, Herwig J, Themann H (1980) The morphologic characteristics of intercellular junctions between normal human liver cells and cells from patients with extrahepatic cholestasis. Am J Pathol 100:93–114

    PubMed  CAS  Google Scholar 

  • Robenek H, Rassat J, Grosser V, Themann H, (1982) Ultrastructural study of cholestasis induced by long-term treatment with estradiol valerate I. Tight junctional analysis and tracer experiments. Virchows Arch (Cell Pathol) 40:201–215

    Article  CAS  Google Scholar 

  • Roman ID, Monte MJ, Gonzalez-Buitrago JM, Esteller A, Jimenez R (1990) Inhibition of hepatocyte vesicular transport by cyclosporin A in the rat: relationship with cholestasis and hyperbilirubinemia. Hepatology 12:83–91

    Article  PubMed  CAS  Google Scholar 

  • Ros E, Small DM, Carey MC (1979) Effects of chlorpromazine hydrochloride on bile salt synthesis, bile formation and biliary lipid secretion in the rhesus monkey: a model for chlorpromazine-induced cholestasis. Eur J Clin Invest 9:29–41

    Article  PubMed  CAS  Google Scholar 

  • Rosario J, Sutherland E, Simon FR (1988) Ethinyl estradiol administration selectivelyalters liver sinusoidal membrane lipid fluidity and protein composition. Biochemistry 27:3939–3946

    Article  PubMed  CAS  Google Scholar 

  • Rotolo FS, Branum GD, Bowers BA, Meyers WC (1986) Effect of cyclosporine on bile secretion in rats. Am J Surg 151 :35–40

    Article  PubMed  CAS  Google Scholar 

  • Ruetz S, Fricker G, Hugentobler G, Winterhalter K, Kurz G, Meier PJ (1987) Isolationand characterization of the putative canalicular bile salt transport system of rat liver. J Biol Chem 262:11324–11330

    PubMed  CAS  Google Scholar 

  • Sakisaka S, Ng OC, Boyer JL (1988) Tubulovesicular transcytotic pathway in isolated rat hepatocyte couplets in culture. Gastroenterology 95:793–804

    PubMed  CAS  Google Scholar 

  • Samuels AM, Carey MC (1978) Effects of chlorpromazine hydrochloride and its metabolites on Mg2+- and Na,K-ATPase activities of canalicular enriched rat liver plasma membranes. Gastroenterology 74:1183–1190

    PubMed  CAS  Google Scholar 

  • Sandermann H (1978) Regulation of membrane enzymes by lipids. Biochim Biophys Acta 515:209–237

    PubMed  CAS  Google Scholar 

  • Schachter D (1984)Fluidity and function of hepatocyte plasma membranes.Hepatology 4:140–151

    CAS  Google Scholar 

  • Schade RR, Guglielmi A, VanThiel DH, Thompson ME, Warty V, Griffith B, Sanghvi A, Bahnson H, Hardesty R (1983) Cholestasis in heart transplant recipients treated with cyclosporine. Transplant Proc 25:2757–2760

    Google Scholar 

  • Scharschmidt BF, Keeffe EB, Vessey DA, Blankenship MN, Ockner RK (1981) In vitro effects of bile salts on rat liver plasma membrane, lipid fluidity and ATPase activity. Hepatology 1:137–145

    Article  PubMed  CAS  Google Scholar 

  • Schenk DB, Hubert JJ, Leffert HL, (1984)Use of a monoclonal antibody to quantify(Na+,K+)-ATPase activity and sites in normal and regenerating rat liver, J Biol Chem 259:14941–14951

    PubMed  CAS  Google Scholar 

  • Scholmerlich J, Becher MS, Schmidt L, Schubert R, Kremer B, Feldhaus S, Gerok W, (1984) Influence of hydroxylation and conjugation of bile salts on their membranedamaging properties - studies on isolated hepatocytes and lipid membrane vesicles. Hepatology 4:661–666

    Article  Google Scholar 

  • Schulze PJ, Czok G (1975) Reduced bile flow in rats during sulfobromophthalein infusion. Toxicol Appl Pharmacol 32:213–224

    Article  PubMed  CAS  Google Scholar 

  • Schwarz LR, Schwenk M, Pfaff E, Greim H (1977) Cholestatic steroid hormonesinhibit taurocholate uptake into isolated rat hepatocytes. Biochem Pharmacol 26:2433–2437

    Article  PubMed  CAS  Google Scholar 

  • Schwenk M, Schwarz LR, Greim H (1977) Taurolithocholate inhibits taurocholate uptake by isolated hepatocytes at low concentrations, Naunyn Schmiedebergs Arch Pharmacol 298:175–179

    Article  PubMed  CAS  Google Scholar 

  • Seetharam S, Sussman NL, Komoda T, Alpers DH (1986) The mechanism of elevatedalkaline phosphatase activity after bile duct ligation in the rat. Hepatology 6:374–380

    Article  PubMed  CAS  Google Scholar 

  • Sewell RB, Barham SS, Zinsmeister AR, LaRusso NF, (1984) Microtubule modulationof biliary excretion of endogenous and exogenous hepatic lysosomal constituents, Am J Physiol 246:G8–GI5

    PubMed  CAS  Google Scholar 

  • Shepherd AN, Bedford GJ, Hill A, Bouchier IAD, (1984) Primary biliary cirrhosis,dark adaptometry, electro-oculography and vitamin A state. Br Med J 289:1484–1485

    Article  CAS  Google Scholar 

  • Shin T, Mizoguchi Y, Kioka K, Kobayashi K, Morisawa S, (1992) Study on the mechanism of an experimental immunological intrahepatic cholestasis model. Osaka City Medical J 38:111–125

    CAS  Google Scholar 

  • Shirin H, Schapiro JM, Arber N, Pinkhas J, Sidi Y, Salomon F (1992) Erythromycinbase-induced rash and liver function disturbances. Ann Pharmacother 26: 1522–1523

    PubMed  CAS  Google Scholar 

  • Siegers CP, Watkins JB III, (1991) Biliary excretion of drugs and other chemicals. Fischer, Stuttgart (Progress in pharmacology and clinicalpharmacology.vol8/4)

    Google Scholar 

  • Simon FR, Arias IM, (1973) Alteration of bile canalicular enzymes in cholestasis. A possible cause of bile secretory failure. J Clin Invest 52:765–775

    Article  PubMed  CAS  Google Scholar 

  • Simon FR, Sutherland E, Accation L (1977) Stimulation of hepatic Na+,K+-ATPase activity by phenobarbital: its possible role in regulation of bile flow, J Clin Invest 59:849–861

    Article  PubMed  CAS  Google Scholar 

  • Simon FR. Gonzalez M, Sutherland E, Accation L, Davis RA, (1980) Reversal ofethinyl estradiol-induced bile secretory failure with Triton WR-1339. J Clin Invest 65:851–859

    Article  PubMed  CAS  Google Scholar 

  • Sippel CJ, Ananthanarayanan M, Suchy FJ, (1990) Isolation and characterization of the canalicular membrane bile acid transport protein, Am J Physiol 258:G729–G737

    Google Scholar 

  • Slikker W. Vore M, Bailey JR, Meyers M, Montgomery C, (1983) Hepatotoxic effectsof estradiol-17β-D-glucuronide in the rat and monkey, J Pharmacol Exp Ther 225:138–43

    PubMed  CAS  Google Scholar 

  • Spector AA, Yorek MA (1985) Membrane lipid composition and cellular function. J Lipid Res 26:1015–1035

    PubMed  CAS  Google Scholar 

  • Spivey JR, Bronk SF, Gores GJ, (1993) Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes: role of ATP depletion and cytosolic free calcium. J Clin Invest 92: 17–24

    Article  PubMed  CAS  Google Scholar 

  • Stacey NH. Kotecka B, (1988)Inhibition of taurocholate and ouabain transport in isolated rat hepatocytes by cyc\osporin A, Gastroenterology 95:7110–786

    Google Scholar 

  • Stiehl A. Becker M, Czygan P, Frohling W, Kommerell B. Rothauwe HW. Senn M, (1980) Bile acids and their sulphated and glucuronidated derivatives in bile plasma, and urine of children with intrahepatic cholcstasis effects of phenobarbital treatment, Eur J Clin Invest 10:307–316

    Article  PubMed  CAS  Google Scholar 

  • Stolz A, Takikawa H. Ookhtens M, Kaplowitz N, (1989) The role of cytoplasmic proteins in hepatic bile acid transport, Annu Rev Physiol 51:161–176

    Article  PubMed  CAS  Google Scholar 

  • Storch J, Schachter D, (1984) A dietary regimen alters hepatocyte plasma membranefluidity and ameliorates ethinyl estradiol cholestasis in the rat, Biochim Biophys Acta 798:137–140

    PubMed  CAS  Google Scholar 

  • Storch J. Schachter D, Inoue M, (1983) Lipid fluidity of hepatocyte plasma membranesubfractions and their differential regulation by calcium, Biochim Biophy Acta 727:209–212

    Article  CAS  Google Scholar 

  • Stubbs CD (1983) Membrane fluidity: structure and dynamics of membrane lipids, Essays Biochem 19:1–39

    PubMed  Google Scholar 

  • Stramentinoli G. DiPadova C. Gualano M, Rabagnati P, Galli-Kienle M (1981) Ethinylestradiol-induced impairment of bile secretion in the rat. Protective effects of S-adenosyl-l-methionine and its implication in estrogen metabolism, Gastroenterology 80:154–158

    PubMed  CAS  Google Scholar 

  • Takikawa H, Tomita J, Takemura T, Yamanaka M (1991) Cytotoxic effect and uptake mechanism by isolated rat hepatocytes of Iithocholate am! its glucuronide and sulfate. Biochim Biophys Acta 1091:173–178

    Article  PubMed  CAS  Google Scholar 

  • Tarao K, Olinger EJ, Ostrow DJ, Balistreri WF (1982) Impaired bile acid efflux fromhepatocytes isolated from the liver of rats with cholestasis. Am J Physiol 243:G253–G258

    PubMed  CAS  Google Scholar 

  • Tavaloni N, Boyer JL (1980) Relationship between hepatic metabolismof,chlorpromazine and cholestatic effects in the isolated perfused rat liver. JPharmacol Exp Ther 214:269274

    Google Scholar 

  • Tavolini N, Reed JS, Boyer JL (1978) Hemodynamic effects on determinants of bilesecretion in isolated rat liver. Am J Physiol 234:E584–E592

    Google Scholar 

  • Toda G, Kako M, Oka H, Oda T, Ikeda Y, (1978) Uneven distribution of enzymaticalterations on the liver cell surface in experimental extrahepatic cholestasis of rat, Exp Mol Pathol 28:10–24

    Article  PubMed  CAS  Google Scholar 

  • Toda G, Ikeda Y, Kako M, Oka H, Oda T (1980) Mechanism of elevation of serumalkaline phosphatase activity in biliary obstruction: an experimental study. Clin Chim Acta 107:85–96

    Article  PubMed  CAS  Google Scholar 

  • Traiger GJ, Vyas KP, Hanzlik RP (1985) Effects of inhibitors of α-naphthylisothiocyanate induced hepatotoxicity on the in vivo metabolism of α-naphthylisothiocyanate. Chern Biol Interact 52:335–345

    Article  CAS  Google Scholar 

  • Tuchweber B, Gabbiani G (1976) Phalloidin-induced hyperplasia of actin microfilamentsin rat hepatocytes. In: Preisig R, Bircher J, Paumgartner G (eds) The liver:quantitative aspects of structure and function. Karger, Basel pp 84–90

    Google Scholar 

  • Utili R, Abernathy CO, Zimmermann HJ (1977) Studies on the effect of Escherichiacoli endotoxin on canalicular bile formation in isolated perfused rat liver. J Lab Clin Med 89:471–482

    PubMed  CAS  Google Scholar 

  • Utili R, Tripodi MF, Adinolfi LD, Gaeta FB, Abernathy CO, Zimmerman HJ (1990)Estradiol-17β-D-glucuronide (E-17G) cholestasis in perfused rat liver: fate of E-17G and choleretic responses to bile salts. Hepatology 11:735–742

    Article  PubMed  CAS  Google Scholar 

  • VanDyke RW (1990) The liver in pregnancy. In: Zakim D, Boyer TD (eds) Hepatology. Saunders, New York, pp 1438–1459

    Google Scholar 

  • VanDyke RW, Scharschmidt BF, (1987) Effect of chlorpromazine on Na+-K+-ATPasepumping and solute transport in rat hepatocytes. Am J Physiol 253:G613–G621

    PubMed  Google Scholar 

  • Vonk RJ, Tuchweber B, Masse D, Perea A, Audet M, Roy CC, Yousef IM (1981)Intrahepatic cholestasis induced by allo monohydroxy bile acid in rats. Gastroenterology 81:242–259

    Google Scholar 

  • Vore M (1987) Estrogen cholestasis. Membranes, metabolites or receptors? Gastroenterology 93:643–649

    PubMed  CAS  Google Scholar 

  • Vore M (1991) Cholestasis. In: Siegers CP, Watkins JB III (eds) Progress in pharmacology and clinical pharmacology: biliary excretion of drugs and other chemicals. Fischer, Stuttgart, pp 455–474

    Google Scholar 

  • Vore M, Slikker W (1985) Steroid D-ring glucuronides, a new class of cholestatic agents. Trends Pharmacol Sci 6:256–259

    Article  CAS  Google Scholar 

  • Vore M, Hadd H, Slikker W (1983) Ethinylestradiol-17β-D-ring glucuronide conjugates are potent cholestatic agents in the rat. Life Sci 32:2989–2993

    Article  PubMed  CAS  Google Scholar 

  • Vore M, Montgomery C, Durham S, Schlarman D, Elliott WH (1989) Structureactivityrelationship of the cholestatic activity of dihydrotestosterone glucuronide, allo bile acids and lithocholate. Life Sci 44:2033–2040

    Article  PubMed  CAS  Google Scholar 

  • Vu DD, Tuchweber B, Plaa GL, Yousef IM (1992) Pathogenesis of lithocholateinducedintrahepatic cholestasis: role of glucuronidation and hydroxylation of lithocholate. Biochim Biophys Acta 1126:53–59

    PubMed  CAS  Google Scholar 

  • Wannagat FJ, Adler RD, Ockner RK (1978) Bile acid-induced increase in bile acid-independent flow and plasma membrane Na,K-ATPase activity in rat liver. J Clin Invest 61:297–307

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Miyairi M, Oshio C, Smith CR, Phillips MJ (1983) Phalloidin alters bilecanalicular contractility in primary monolayer cultures ofrat liver. Gastroenterology 85:245–253

    PubMed  CAS  Google Scholar 

  • Weinman SA, Graf J, Boyer JL, (1989)Voltage-driven taurocholate-dependent secretion in isolated hepatocyte couplets, Am J Physiol 256:G826–G832

    PubMed  CAS  Google Scholar 

  • Wieland LT, Nassal M, Kramer W, Fricker G, Bickel U, Kurz G (1984) Identity of hepatic membrane transport systems for bile salts, phalloidin, and antamanide byphotoaffinity labeling. Proc Natl Acad Sci USA 81:5232–5236

    Article  PubMed  CAS  Google Scholar 

  • Witzleben CL (1972) Physiologic and morphologic natural history of a model of intrahepatic cholestasis (manganese-bilirubin overload). Am J Pathol 65:577–588

    Google Scholar 

  • Yamada S, Takehara K, Arai T, Takezawa J, Kobayashi S, Mizoguchi Y, Morisawa S, Yamamoto S, Nagura H (1990) Immunocytochemical studies on cholcstatic factor in human liver with or without cholestasis. Liver 10:129–136

    PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Daile Molle E, Hardison WGM (1991) Vasopressin triggers myosin lightchain phosphorylation in isolated rat hepatocytes. Am J Physiol 24:312–319

    Google Scholar 

  • Yousef IM, Tuchweber R, Vonk RJ, Masse D, Audet M, Roy CC, (1981) Lithocholatecholestasis-sulfated glycolithocholate-induced intrahepatic cholestasis in rats, Gastroenterology 80:233–241

    PubMed  CAS  Google Scholar 

  • Cholestatic and hepatocellular injury associated with erythromycin esters. Report of nine cases. Dig Dis Sci 24:385–396

    CAS  Google Scholar 

  • Zimmerli B, Valantinas J, Meier PJ, (1989) Multispecificity (sinusoidal) rat liver plasmamembrane vesicles, J Pharmacol Exp Ther 250:301–308

    PubMed  CAS  Google Scholar 

  • Zimmerman HJ. Lewis JH (1978) Drug-induced cholestasis. Med Toxicol 2: 112–160

    Google Scholar 

  • Zimniak P, Awasthi YC, (1993) ATP-dependent transport systems for organic anions, Hepatology 17:330–339

    Article  PubMed  CAS  Google Scholar 

  • Zimniak P, Ziller SA, Panfil I, Radominska A, Wolters H, Kuipers F, Sharma R,Saxena M, Moslen MT, Vore M, Vonk RJ, Awasthi YC, Lester R, (1992) Identificationof an anion-transport ATPase that catalyzes glutathione conjugate-dependent ATP hydrolysis in canalicular plasma membranes from normal rats and ratswith conjugated hyperbilirubinemia (GY mutant), Arch Biochcm Biophys 292:534–538

    Article  CAS  Google Scholar 

  • Zysset T. Reichen J, (1988) Anticholestatic agents: experimental and clinical aspects.In: Testa B, Perrissoud D, (eds) Liver drugs: from experimental pharmacology to therapeutic application. CRC Press. Boca Raton, pp 113–143

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Watkins, J.B., Klaassen, C.D. (1996). Mechanisms of Drug-Induced Cholestasis. In: Cameron, R.G., Feuer, G., de la Iglesia, F.A. (eds) Drug-Induced Hepatotoxicity. Handbook of Experimental Pharmacology, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61013-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61013-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64657-7

  • Online ISBN: 978-3-642-61013-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics