Skip to main content

Theoretische Aspekte neuronaler Netzwerke

  • Chapter
  • 73 Accesses

Zusammenfassung

Wir betrachten neuronale Netzwerke mit diskreten oder analogen Gatterfunktionen. Selbst die Berechnungskraft relativ kleiner neuronaler Netzwerke beschränkter Tiefe ist, besonders in Hinsicht auf arithmetische Operationen, immens. Aber gerade diese Stärke ist auch ein Grund für die Schwierigkeit des Lernens von und mit „einfachen“ neuronalen Netzwerken.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Schriftenverzeichnis

  1. J.H. Ahlberg, E.N. Nilson und J.L. Walsh (1967). The Theory of Splines and their Applications. Academic Press

    Google Scholar 

  2. P. Beame und J. Hâstad (1989). Optimal bounds for decision problems on the CRCW PRAM. J. ACM 36, 643–670.

    Article  MATH  Google Scholar 

  3. A. Blum und R. L. Rivest, (1988). Training a 3-node neural network is NP-complete. Proceedings of the 1988 Annual Workshop on Computational Learning Theory, 9–18.

    Google Scholar 

  4. E.W. Cheney (1966). Introduction to Approximation Theory. McGraw-Hill.

    Google Scholar 

  5. B. DasGupta und G Schnitger (1993). The power of approximating: a comparison of activation functions. In: Advances in Neural Information Processing Systems 5. Eds: C.L. Giles, S.J. Hanson und J.D. Cowan. Morgan Kaufmann, 615–622.

    Google Scholar 

  6. B. DasGupta und G. Schnitger (1995). The power of approximating: a comparison of activation functions. Manuskript.

    Google Scholar 

  7. B. DasGupta und G. Schnitger. Analog versus discrete neural networks. Erscheint in Neural Computation.

    Google Scholar 

  8. M. Goldmann und M. Karpinski (1993). Simulating threshold circuits by majority circuits. Proceedings of the 25th Annual ACM Symposium on the Theory of Computing, 551–560.

    Google Scholar 

  9. A. Hajnal, W. Maass, P. Pudlik, M. Szegedy und G. Turin (1987). Threshold circuits of bounded depth. Proceedings of the 28th Annual Symposium on Foundations of Computer Science, 99–110.

    Google Scholar 

  10. J. Håstad (1989). Almost optimal lower bounds for small depth circuits. in: Advances in Computer Research, vol. 5: Randomness and Computation. Ed. S. Micali. JAI Press, 143–170.

    Google Scholar 

  11. J. Håstad (1994). On the size of weights for threshold gates. SIAM J. on Disc. Math. 7, 484–492.

    Article  MATH  Google Scholar 

  12. J. Hertz, A. Krogh und R.G. Palmer (1991). Introduction to the Theory of Neural Computation. Addison-Wesley.

    Google Scholar 

  13. E.R. Kandel, J.H. Schwartz und T.M. Jessel (1991). Principles of Neural Science. Third edition, Elsevier.

    Google Scholar 

  14. M. Karpinski und A. Macintyre (1995). Polynomial bounds for VC-dimension of sigmoidal neural networks. Proceedings of the 27th Annual ACM Symposium on the Theory of Computing, 200–208.

    Google Scholar 

  15. M.J. Kearns und U.V. Vazirani (1994). An Introduction to Computational Learning Theory. MIT Press.

    Google Scholar 

  16. R.M. Karp und V. Ramachandran (1990). Parallel algorithms for shared memory machines. In: Handbook of Theoretical Computer Science, vol. A: Algorithms and Complexity. Ed. J. van Leeuwen. MIT Press, 869–941.

    Google Scholar 

  17. M. Kharitonov (1993). Cryptographic hardness of distribution specific learning. Proceedings of the 25th Annual ACM Symposium on the Theory of Computing, 372–381.

    Google Scholar 

  18. M. Krause (1995). A note on realizing iterated multiplication by small depth threshold circuits. Proceedings of the Symposium on Theoretical Aspects of Computer Science, 83–94.

    Google Scholar 

  19. S. Muroga (1971). Threshold Logic and its Applications. Wiley-Interscience.

    Google Scholar 

  20. W.S. McCulloch und W. Pitts (1943). A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133.

    Article  MathSciNet  MATH  Google Scholar 

  21. W. Maass, G. Schnitger und E. Sontag (1991). On the computational power of sigmoid versus boolean threshold circuits. Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, 767–776.

    Google Scholar 

  22. W. Maass und G. Turân (1994). How fast can a threshold gate learn? In: Computational Learning Theory and Natural Learning Systems. Eds. S.J. Hanson, G.A. Drastal und R.L. Rivest, MIT Press, 381–414.

    Google Scholar 

  23. I. Parberry (1994). Circuit Complexity and Neural Networks. MIT Press.

    Google Scholar 

  24. R.L. Rivest, A. Shamir und L. Adleman (1978). A method for obtaining digital signatures and public key cryptosystems. Communications of the ACM 21, 120–126.

    Google Scholar 

  25. F. Rosenblatt (1962). Principles of Neurodynamics. Spartan.

    Google Scholar 

  26. G.M. Shepherd (1988). Neurobiology. Second edition, Oxford University Press.

    Google Scholar 

  27. K.Y. Siu, J. Bruck, Th. Kailath und Th. Hofmeister (1993). Depth-efficient neural networks for division and related problems. IEEE Trans. on Inform. Theory 39, 946–956.

    Article  MathSciNet  MATH  Google Scholar 

  28. K.Y. Siu und V. Roychowdhury (1994). On optimal depth threshold circuits for multiplication and related problems. SIAM J. on Disc. Math. 7, 284–292.

    Article  MathSciNet  MATH  Google Scholar 

  29. L.G. Valiant (1984). A theory of the learnable. Communications of the ACM 27, 1134–1142.

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schnitger, G. (1996). Theoretische Aspekte neuronaler Netzwerke. In: Wegener, I. (eds) Highlights aus der Informatik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61012-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61012-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64656-0

  • Online ISBN: 978-3-642-61012-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics