Skip to main content

Phencyclidine: A Drug of Abuse and a Tool for Neuroscience Research

  • Chapter
Pharmacological Aspects of Drug Dependence

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 118))

Abstract

Phencyclidine (PCP; 1-(1-phenylcyclohexyl)piperidine hydrochloride) was launched as an intravenous anesthetic under the trade name Sernyl by Parke, Davis and Company in the late 1950s. Unlike other general anesthetics, phencyclidine prodecud unconsciousness, absence of pain perception and amnesia without suppressing vital reflexes; the so-called dissociative anesthetic state induced by phencyclidine differed qualitatively from anesthesia induced by depressant drugs and volatile anesthetics (DOMINO 1964). However, unwanted psychotomimetic effects, often resembling acute schizophrenic anesthesia and the drug was withdrawn from clinical development (GREIFENSTEIN et al. 1958; DOMINO 1964).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Ahmad G (1987) Abuse of phencyclidine (PCP) A laboratory experience. J Toxicol Clin Toxicol 25:341–346

    Article  PubMed  CAS  Google Scholar 

  • Akunne HC, Reid AA, Thurkauf A, Jacobson AE, De Costa BR, Rice KC, Heyes MP, Rothman RB (1991) [3H]-[2-(2-Thienyl)cyclohexyl] piperidine labels two high-affinity binding sites in human cortex: further evidence for phencyclidine binding sites associated with the biogenic amine reuptake complex. Synapse 8:289–300

    Article  PubMed  CAS  Google Scholar 

  • Albuquerque EX, Aguayo LG, Warnick JE, Weinstein H, Glick SD, Maayani S, Ickowicz RK, Blaustein MP (1981) The behavioral effects of phencyclidines may be due to their blockade of potassium channels. Proc Natl Acad Sci U S A 78:7792–7796

    Article  PubMed  CAS  Google Scholar 

  • Anis NA, Berry SC, Burton NR, Lodge D (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79:565–575

    PubMed  CAS  Google Scholar 

  • Ascher P, Nowak L (1987) Electrophysiological studies of NMDA receptors. Trends Neurosci 10:284–288

    Article  CAS  Google Scholar 

  • Balster RL (1987) The behavioral pharmacology of phencyclidine. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 1573–1579

    Google Scholar 

  • Balster RL (1989) Substitution and antagonism in rats trained to discriminate (+)-N-allylnormetazocine from saline. J Pharmacol Exp Ther 249:794–796

    Google Scholar 

  • Balster RL (1991) Discriminative stimulus properties of phencyclidine and other NMDA antagonists. In: Glennon RA, Järbe TUC, Frankenheim J (eds) Drug discrimination: applications to drug abuse research. National Institute on Drug Abuse Research Monograph Series 116. DHHS publication no (ADM) 92-1878. US Government Printing Office, Washington, pp 163–180

    Google Scholar 

  • Balster RL, Wessinger WD (1983) Central nervous system depressant effects of phencyclidine. In: Kamenka J-M, Domino EF, Geneste P (eds) Phencyclidine and related arylcyclohexylamines: present and future applications. NPP, Ann Arbor, pp 291–309

    Google Scholar 

  • Balster RL, Willetts J (1988) Receptor mediation of the discriminative stimulus properties of phencyclidine and sigma-opioid agonists. In: Colpaert FC, Balster RL (eds) Transduction mechanisms of drug stimuli. Springer, Berlin Heidelberg New York, pp 122–135

    Google Scholar 

  • Balster RL, Woolverton WL (1980) Continuous access phencyclidine self-administration by rhesus monkeys leading to physical dependence. Psychopharmacology 70:5–10

    Article  PubMed  CAS  Google Scholar 

  • Balster RL, Woolverton WL (1981) Tolerance and dependence to phencyclidine. In: Domino EF (ed) PCP (Phencyclidine): historical and current perspectives. NPP, Ann Arbor, pp 293–306

    Google Scholar 

  • Balster RL, Johanson CE, Harris RT, Schuster CR (1973) Phencyclidine self-administration in the rhesus monkey. Pharmacol Biochem Behav 1:167–172

    Article  CAS  Google Scholar 

  • Balster RL, Nicholson KL, Sanger DJ (1994) Evaluation of the reinforcing effects of eliprodil in rhesus monkeys and its discriminative stimulus effects in rats. Drug Alcohol Depend 35:211–216

    Article  PubMed  CAS  Google Scholar 

  • Barren JE, Willetts J (1994) Conflict procedures as pharmacological screens for anxiolytic drugs. In: Paloma T, Archer T (eds) Strategies for studying brain disorders, vol 1: depressive, anxiety and drug abuse disorders. Farrand, London, pp 179–196

    Google Scholar 

  • Baunez C, Nieoullon A, Almaric M (1994) N-methyl-n-aspartate receptor blockade impairs behavioural performance of rats in a reaction time task: new evidence for glutamatergic-dopaminergic interactions in the striatum. Neuroscience 61:521–531

    Article  PubMed  CAS  Google Scholar 

  • Beardsley PM, Balster RL (1987) Behavioral dependence upon phencyclidine and ketamine in the rat. J Pharmacol Exp Ther 242:203–211

    PubMed  CAS  Google Scholar 

  • Beardsley PM, Balster RL (1988) Evaluation of antagonists of the discriminative stimulus and response rate effects of phencyclidine. J Pharmacol Exp Ther 244:34–40

    PubMed  CAS  Google Scholar 

  • Beardsley PM, Hayes BA, Balster RL (1990) The self-administration of MK-801 can depend upon drug-reinforcement history and its discriminative stimulus properties are phencyclidine-like in rhesus monkeys. J Pharmacol Exp Ther 252:953–959

    PubMed  CAS  Google Scholar 

  • Ben-Eliyahu S, Marek P, Vaccarino AL, Mogil JS, Sternberg WF, Liebeskind JC (1992) The NMDA receptor antagonist MK-801 prevents long-lasting nonassociative morphine tolerance in the rat. Brain Res 575:304–308

    Article  PubMed  CAS  Google Scholar 

  • Bespalov A, Dumpis M, Piotrovsky L, Zvartau E (1994) Excitatory amino acid receptor antagonist kynurenic acid attenuates rewarding potential of morphine. Eur J Pharmacol 264:233–239

    Article  PubMed  CAS  Google Scholar 

  • Bigge CF (1993) Structural requirements for the development of potent N-methyl-D-aspartic acid (NMDA) receptor antagonists. Biochem Pharmacol 45:1547–1561

    Article  PubMed  CAS  Google Scholar 

  • Blanchard DC, Blanchard RJ, Corobrez ADP, Veniegas R, Rodgers RJ, Shepherd JK (1992) MK-801 produces a reduction in anxiety-related antipredator aggressiveness in male and female rats and a gender-dependent increase in locomotor behavior. Psychopharmacology 108:352–362

    Article  PubMed  CAS  Google Scholar 

  • Boast CA (1988) Neuroprotection after brain ischemia: role of competitive N-methyl D-aspartate antagonists. In: Cavalheiro EA, Lehmann J, Turski L (eds) Frontiers in excitatory amino acid research. Liss New York, Pp 691–698

    Google Scholar 

  • Bonhaus DW, Burge BC, McNamara JO (1987) Biochemical evidence that glycine allosterically regulates an NMDA receptor- coupled ion channel. Eur J Pharmacol 142:489–490

    Article  PubMed  CAS  Google Scholar 

  • Boren JL Consroe P (1981) Phencyclidine (PCP) and ethanol: potentiation of lethality and sleep time with combined administration in rats. Neurobehav Toxicol Teratol 3:11–14

    CAS  Google Scholar 

  • Brady KT, Woolverton WL, Balster RL (1982) Discriminative stimulus and reinforcing properties of etoxadrol and dexoxadrol in monkeys. J Pharmacol Exp Ther 220:56–62

    PubMed  CAS  Google Scholar 

  • Brandão ML, Fontes JCS, Graeff FG (1980) Facilitatory effect of ketamine on punished behavior. Pharmacol Biochem Behav 13:1–4

    Article  PubMed  Google Scholar 

  • Brecher M, Wang BW, Wong H, Morgan JP (1988) Phencyclidine and violence: clinical and legal issues. J Clin Psychopharmacol 8:397–401

    Article  PubMed  CAS  Google Scholar 

  • Bristow LJ, Hutson PH, Thorn HL, Tricklebank MD (1993) The glycine/NMDA receptor antagonist R-(+)-HA-966, blocks activation of the mesolimbic dopaminergic system induced by phencyclidine and dizocilpine (MK-801) in rodents. Br J Pharmacol 108:1156–1163

    PubMed  CAS  Google Scholar 

  • Brocco MJ, Rastogi SK, McMillan DE (1983) Effects of chronic phencyclidine administration on the schedule-controlled behavior in rats. J Pharmacol Ex p Ther 226:449–454

    CAS  Google Scholar 

  • Browne RG (1986) Discriminative stimulus properties of PCP mimetics. In: Clouet DH (ed) Phencyclidine: an update. Natinal Institute on Drug Abuse Research Monograph 64 (DHHS publication no ADM 86-1443). US Government Printing Office Washington DC, pp 134–147

    Google Scholar 

  • Carroll ME (1985) Concurrent phencyclidine and saccharin access: Presentation of an alternative reinforcer reduces drug intake. J Exp Anal Behav 4:131–144

    Article  Google Scholar 

  • Carroll ME (1987) A quantitative assessment of phencyclidine dependence produced by oral self-administration in rhesus monkeys. J Pharmacol Exp Ther 242:405–412

    PubMed  CAS  Google Scholar 

  • Carroll ME (1993) The economic context of drug and non-drug reinforcers affects acquisition and maintenance of drug-reinforced behavior and withdrawal effects. Drug Alcohol Depend 33:201–210

    Article  PubMed  CAS  Google Scholar 

  • Carroll ME, Carmona G (1991) Effects of food FR and food deprivation on disruptions in food-maintained performance of monkeys during phencyclidine withdrawal. Psychopharmacology 104:143–149

    Article  PubMed  CAS  Google Scholar 

  • Carroll ME, Meisch R (1980) Oral phencyclidine (PCP) self-administration in rhesus monkeys: effects of feeding conditins. J Pharmacol ExP Ther 214:339–346

    PubMed  CAS  Google Scholar 

  • Carroll ME, Meisch RA (1984) Increased drug-reinforced behavior due to food deprivation. In: Thompson T, Dews PB, Barrett JE (eds) Advances in behavioral pharmacology, vol 4. Academic, New York, pp 44–88

    Google Scholar 

  • Chait LD, Balster RL (1978a) Interaction between Phencyclidine and pentobarbital in several species of laboratory animals. Commun PsychoPharmacol 2:351–356

    PubMed  CAS  Google Scholar 

  • Chait LD, Balster RL (1978b) The effects of acute and chronic phencyclidine on schedule-controlled behavior in the squirrel monkey. J Pharmacol Exper Ther 204:77–87

    CAS  Google Scholar 

  • Chait LD, Wenger GR, McMillan DE (1981) Effects of phencyclidine and ketamine on punished and unpunished responding by pigeons. Pharmacol Biochem Behav 15:145–148

    Article  PubMed  CAS  Google Scholar 

  • Chasnoff IJ, Burns KA, Burns WJ, Schnoll SH (1986) Prenatal drug exposure: effects on neonatal and infant growth and development. Neurobehav Toxicol Teratol 8:357–362

    PubMed  CAS  Google Scholar 

  • Church J, Lodge D (1990) Anticonvulsant actions of phencyclidine receptor ligands: correlation with N-methyl-D-aspartate antagonism in vivo. Gen Pharmacol 21:165–170

    Article  PubMed  CAS  Google Scholar 

  • Clineschmidt BV, Williams M, Witoslawski JJ, Bunting PR, Risley EA, Totaro JA (1982) Restoration of shock-suppressed behavior by treatment with (+)-5-methyl-10–11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties. Drug Dev Res 2:147–163

    Article  CAS  Google Scholar 

  • Collingridge GL, Singer W (1990) Excitatory amino acids and synaptic plasticity. Trends Pharmacol Sci 8:290–296

    Article  Google Scholar 

  • Cook CE, Jeffcoat AR (1990) Pyrolytic degradation of heroin, phencyclidine and cocaine: identification of products and some observations on their metabolism. In: Chang CN, Hawks RL (eds) Research findings on smoking of abused substances. National Institute on Drug Abuse Research Monograph 99. DHHS publication no (ADM)90-1690. US Government Printing Office, Washington DC, pp 97–120

    Google Scholar 

  • Corbett R, Dunn RW (1991) Effects of HA-966 on conflict, social interaction, and plus maze behavior. Drug Dev Res 24:201–205

    Article  CAS  Google Scholar 

  • Daghestani AN, Schnoll SH (1989) Phencyclidine abuse and dependence. In: Treatments of psychiatric disorders, vol 2. A task force report of the American Psychiatric Association. Washington DC: American Psychiatric Association, pp 1209–1218

    Google Scholar 

  • Daniel LC (1989) The noncompetitive N-methyl-D-aspartate antagonists, MK-801, phencyclidine and ketamine, increase the potency of general anesthetics. Pharmacol Biochem Behav 36:111–115

    Article  Google Scholar 

  • De Sarro GB, De Sarro A (1993) Anticonvulsant properties of non-competitive antagonists of the N-methyl-D-aspartate receptor in genetically epilepsy-prone rats: comparison with CPPene. Neuropharmacology 32:51–68

    Article  PubMed  Google Scholar 

  • Dickenson AH, Aydar E (1991) Antagonism at the glycine site on the MMDA receptor reduces spinal nociception in the rat. Neurosci Lett 121:263–266

    Article  PubMed  CAS  Google Scholar 

  • Dimpfel W, Spuler M (1990) Dizocilpine (MK-801), ketamine and phencyclidine: low doses affect brain field potentials in the freely moving rat in the same way as activation of dopaminergic transmissin. Psychopharmacology 101:317–323

    Article  PubMed  CAS  Google Scholar 

  • Domino EF (1964) Neurobiology of phencyclidine (Sernyl). Int Rev Neurobiol 6:303–347

    Article  PubMed  CAS  Google Scholar 

  • Fagg GE (1987) Phencyclidine and related drugs bind to the activated N-methyl-D-aspartate receptor-channel complex in rat brain membranes. Neurosci Lett 76:221–227

    Article  PubMed  CAS  Google Scholar 

  • Faiman CP, Viu E, Skolnick P, Trullas R (1994) Differential effects of compounds that act at strychnine-insensitive glycine receptors in a punishment procedure. J Pharmacol Exp Ther 270:528–533

    PubMed  CAS  Google Scholar 

  • File SE, Fernandes C (1994) Dizocilpine prevents the development of tolerance to the sedative effects of diazepam in rats. Pharmacol Biochem Behav 47:823–826

    Article  PubMed  CAS  Google Scholar 

  • Foster AC, Gill R, Woodruff GN, Iversen LI (1988) Non-competitive NMDA receptor antagonists and ischaemia-induced neuronal degeneration. In: Cavalheiro EA, Lehmann J, Turski L (eds) Frontiers in excitatory amino acid research. Liss, New York, pp 707–714

    Google Scholar 

  • France CP, Snyder AM, Woods JH (1989) Analgesic effects of phencyclidine-like drugs in rhesus monkeys. J Pharmacol Exp Ther 250:197–201

    PubMed  CAS  Google Scholar 

  • France CP, Moerschbaecher JM, Woods JH (1991) MK-801 and related compounds in monkeys: discriminative stimulus effects and effects on a conditional discrimination. J Pharmacol Exp Ther 257:727–734

    PubMed  CAS  Google Scholar 

  • French ED, Lin JY, Simms D (1992) Characterization of possible mechanisms by which phencyclidine (PCP) and PCP-like drugs alter the activity of A10 dopamine neurons: electrophysiological and behavioral studies. In: Kamenka J-M, Domino EF (eds) Multiple sigma and PCP receptor ligands: mechanisms for neuromodulation and neuroprotection? NPP, Ann Arbor, pp 445–457

    Google Scholar 

  • French ED, Mura A, Wang T (1993) MK-801, phencyclidine (PCP), and PCP-like drugs increase burst firing in rat A10 dopamine neurons: comparison to competitive NMDA antagonists. Synapse 13:108–116

    Article  PubMed  CAS  Google Scholar 

  • Gee KR, Barmettler P, Rhodes MR, McBurney RN, Reddy NL, Hu LY, Cotter RE, Hamilton PN, Weber E, Keana JF (1993) 10,5-(Iminomethano)-10,11-dihydro-5H-dibenzo[a,d]cycloheptene and derivatives. Potent PCP receptor ligands. J Med Chem 36:1938–1946

    Article  PubMed  CAS  Google Scholar 

  • Ginski MJ, Witkin JM (1994) Sensitive and rapid behavioral defferentatation of N-methyl-D-aspartate receptor antagonists. Psychopharmacology 114:573–582

    Article  PubMed  CAS  Google Scholar 

  • Gold LH, Balster RL (1993) Effects of NMDA receptor antagonists in squirrel monkeys trained to discriminate the competitive NMDA receptor antagonist NPC 12626 from saline. Eur J Pharmacol 230:285–292

    Article  PubMed  CAS  Google Scholar 

  • Golden NL, Kuhnert BR, Sokol RJ, Martier S, Williams T (1987) Neonatal manifestations of maternal phencyclidine exposure. J Perinat Med 15:185–191

    Article  PubMed  CAS  Google Scholar 

  • Gorelick DA, Wilkins JN (1989) Inpatient treatment of PCP abusers and users. Am J Drug Alcohol Abuse 15:1–12

    Article  PubMed  CAS  Google Scholar 

  • Gorelick DA, Balster RL (1995) Phencyclidine (PCP). In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 1767–1776

    Google Scholar 

  • Greifenstein FD, Yoshitake J, DeVauit M, Gajewska JE (1958) A study of 1-arylcyclohexylamines for anesthesia. Anesth Analg 37:283

    Article  PubMed  CAS  Google Scholar 

  • Greenberg BD, Segal DS (1986) Evidence for multiple opiate receptor involvement in different phencyclidine-induced unconditioned behaviors in rats. Psychopharmacology 88:44–53

    Article  PubMed  CAS  Google Scholar 

  • Harrison NL, Simmonds MA (1985) Quantitative studies on some antagonists of Nmethyl-D-aspartate in slices of rat cerebral cortex. Br J Pharmacol 84:381–391

    PubMed  CAS  Google Scholar 

  • Hayes BA, Balster RL (1985) Anticonvulsant properties of phencyclidine-like drugs in mice. Eur J Pharmacol 117:121–125

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  PubMed  CAS  Google Scholar 

  • Holtzman SG (1989) Opioid and phencyclidine-like discriminative stimulus effects of ditolylguanidine, a selectivesigma ligand. J Pharmacol Exp Ther 248:1054–1062

    PubMed  CAS  Google Scholar 

  • Hondo H, Yonezawa Y, Nakahara T, Nakamura K, Hirano M, Uchimura H, Tashiro N (1994) Effect of phencyclidine on dopamine release in the rat prefrontal cortex; an in vivo microdialysis study. Brain Res 633:337–342

    Article  PubMed  CAS  Google Scholar 

  • Honey CR, Miljkovic Z, MacDonald JF (1985) Ketamine and phencyclidine cause a voltage-dependent block of responses to L-aspartic acid. Neurosci Lett 61:135–139

    Article  PubMed  CAS  Google Scholar 

  • Isbell H, Fraser HF (1953) Actions and addiction liabilities of dromoran derivatives in man. J Pharmacol Exp Ther 107:524–530

    PubMed  CAS  Google Scholar 

  • Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M, Nakanishi S (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268:2836–2843

    PubMed  CAS  Google Scholar 

  • Itoh J, Nabeshima T, Kameyama T (1991) Utility of an elevated plus-maze for dissociation of amnesic and behavior effects of drugs in mice. Eur J Pharmacol 194:71–76

    Article  PubMed  CAS  Google Scholar 

  • Itzhak Y, Stein I (1990) Sigma-binding sites in the brain: an emerging concept for multiple sites and their relevance for psychiatric disorders. Life Sci 47:1073–1081

    Article  PubMed  CAS  Google Scholar 

  • Jackson A, Sanger DJ (1988) Is the discriminative stimulus produced by phencyclidine due to an interaction with N-methyl-v-aspartate receptors? Psychopharmacology 96:87–92

    Article  PubMed  CAS  Google Scholar 

  • Jacobson AE, Harrison EA Jr, Mattson MV, Rafferty MF, Rice KC, Woods JH, Winger G, Soloman RE, Lessor RA, Silverton JV (1987) Enantiomeric and diastereomeric dioxadrols: behavioral, biochemical and chemical determination of the configuration necessary for phencyclidine-like properties. J Pharmacol Exp Ther 243:110–117

    PubMed  CAS  Google Scholar 

  • Jacobson AE, Linders JTM, Mattson MV, George C, Iorio MA (1992) The 1-(1phenyl-(2-, 3-, 4-methylcyclohexyl)piperidines revisited: synthesis, stereochemistry, absolute configuration, computer assisted modeling and biological effects. In: Kamenka J-M, Domino EF (eds) Multiple sigma and PCP receptor ligands: mechanisms for neuromodulation and neuroprotection? NPP, Ann Arbor, pp 61 – 74

    Google Scholar 

  • Javitt DC (1987) Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia. Hillside J Clin Psychiatry 9:12–35

    PubMed  CAS  Google Scholar 

  • Javitt DC, Jotkowitz A, Sircar R, Zukin SR (1987) Non-competitive regulation of phencyclidine /sigma receptors by the N-methyl-n-aspartate antagonist, d-(—)-2-amino-5-phosphonovaleric acid. Neurosci Lett 78: 193 – 198

    Article  PubMed  CAS  Google Scholar 

  • Jerrard DA (1990) “Designer drugs” — a current perspective. J Emerg Med 8:733–741

    Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurones. Nature 325:529–531

    Article  PubMed  CAS  Google Scholar 

  • Johnson KM Jr (1987) Neurochemistry and neurophysiology of phencyclidine. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 1581–1588

    Google Scholar 

  • Johnson KM, Jones SM (1990) Neuropharmacology of phencyclidine: basic mechanisms and therapeutic potential. Annu Rev Pharmacol Toxicol 30:707–750

    Article  PubMed  CAS  Google Scholar 

  • Johnson KM, Snell LD (1986) Involvement of dopaminergic, cholinergic and glutamatergic mechanisms in the action of phencyclidine-like drugs. In: Clouet 0DH (ed) Phencyclidine: an update. National Institute on Drug Abuse Research Monograph 64 (DHHS publication no ADM 86-1443). US Government Printing Office, Washington DC, pp 52–66

    Google Scholar 

  • Johnson KM, Snell LD, Sacaan AI, Jones SM (1993) Pharmacologic regulation of the NMDA receptor-ionophore complex. In: De Souza EB, Clouet D, London ED, (eds) Sigma, PCP and NMDA receptors. National Institute on Drug Abuse Research Monograph Series 133 (DHHS publication no 93-3587). US Government Printing Office, Washington DC, pp 13 –39

    Google Scholar 

  • Judd LL, McAdams L, Budnick B, Braff DL (1992) Sensory gating deficits in schizophrenia: new results. Am J Psychiatry 149:488–493

    PubMed  CAS  Google Scholar 

  • Kamenka J-M, Chicheportiche R (1988) The conformational adaptation of the phencyclidine molecular pattern to the lipophilicity of its surrourdings. In: Domino EF, Kamenka J-M (eds) Sigma and phencyclidine-like compounds as molecular probes in biology NPP, Ann Arbor, pp 1–10

    Google Scholar 

  • Karler R, Calder LD, Chaudhry IA, Turkanis SA (1989) Blockade of reverse tolerance to cocaine and amphetamine by MK-801. Life Sci 45:599–606

    Article  PubMed  CAS  Google Scholar 

  • Karp SJ, Masu M, Eki T, Ozawa K, Nakanishi S (1993) Molecular cloning and chromosomal localization of the key subunit of the human N-methyl-D-aspartate receptor. J Biol Chem 268:3728–3733

    PubMed  CAS  Google Scholar 

  • Keats AS, Telford J (1964) Narcotic antagonists as analgesics. Clinical aspects. In: Gould RF (ed) Molecular modification of drug design. American Chemical Society, Washington DC, pp 170–176

    Chapter  Google Scholar 

  • Keith VA, Mansbach RS, Geyer MA (1991) Failure of haloperidol to block the effects of phencyclidine and dizocilpine on prepulse inhibition of startle. Biol Psychiatry 30:557–566

    Article  PubMed  CAS  Google Scholar 

  • Khanna JM, Wu PH, Winer J, Kalant H (1991) NMDA antagonist inhibits rapid tolerance to ethanol. Brain Res Bull 25:643–645

    Article  Google Scholar 

  • Kleckner NW, Dingledine R (1988) Requirements for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241:835–837

    Article  PubMed  CAS  Google Scholar 

  • Klepstad P, Maurset A, Moberg ER, Aye I (1990) Evidence of a role for NMDA receptors in pain perception. Eur J Pharmacol 187:513–518

    Article  PubMed  CAS  Google Scholar 

  • Kloog Y, Haring R, Sokolovsky M (1988) Kinetic characterization of the phencyclidine-N-methyl-D-aspartate receptor interaction: Evidence for a steric blockade of the channel. Biochemistry 27:843–848

    Article  PubMed  CAS  Google Scholar 

  • Koek W, Colpaert FC (1992) N-methyl-D-aspartate antagonism and phencyclidinelike activity: behavioral effects of glycine site ligands. In: Kamenka J-M, Domino EF (eds) Multiple sigma and PCP receptor ligands: mechanisms for neuromodulation and neuroprotection? NPP, Ann Arbor, pp 665–671

    Google Scholar 

  • Koek W, Woods JH, Ornstein P (1987) A simple and rapid method for assessing similarities among directly observable effects of drugs: PCP-like effects of 2amino-5-phosphonovalerate in rats. Psychopharmacology 91:297–304

    Article  PubMed  CAS  Google Scholar 

  • Koek W, Woods JH, Winger GD (1988) MK-801, a proposed noncompetitive antagonist of excitatory amino acid neurotransmission, produces phencyclidine-like behavioral effects in pigeons, rats and rhesus monkeys. J Pharmacol Exp Ther 245:969–974

    PubMed  CAS  Google Scholar 

  • Koek W, Colpaert FC, Woods JH, Kamenka J-M (1989) The phencyclidine (PCP) analog N-(1-(2-benzo(B)thiophenyl) cyclohexyl) piperidine shares cocaine-like but not other characteristic behavioral effects with PCP, ketamine and MK-801. J Pharmacol Exp Ther 250:1019–1027

    PubMed  CAS  Google Scholar 

  • Kokoz YM, Alekseev AE, Povsun AA, Korystova AF, Peres-Saad H (1994) Anesthetic phencyclidine, Mocker of the ATP-sensitive potassium channels. FEBS Lett 337:277–280

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    PubMed  CAS  Google Scholar 

  • Kuhar MJ, Boja JW, Cone EJ (1990) Phencyclidine binding to striatal cocaine receptors. Neuropharmacology 29:293–297

    Article  Google Scholar 

  • Kumor KM, Haertzen CA, Johnson RE, Kocher T, Jasinski D (1986) Human psychopharmacology of ketocyclazocine as compared with cyclazocine, morphine and placebo. J Pharmacol Exp Ther 238:960–968

    PubMed  CAS  Google Scholar 

  • Kuramoto T, Maihara T, Masu M, Nakanishi S, Serikawa T (1994) Gene mapping of NMDA receptors and metabotropic glutamate receptors in the rat (Rattus norvegicus). Genomics 19:358–361

    Article  PubMed  CAS  Google Scholar 

  • Kushner L, Lerma J, Zukin RS, Bennett MVL (1988) Coexpression of N-methyl-D-aspartate and phencyclidine receptor in Xenopus oocytes injected with rat brain mRNA. Proc Natl Acad Sci USA 85:3250–3254

    Article  PubMed  CAS  Google Scholar 

  • Kushner L, Bennett MVL, Zukin RS (1993) Molecular biology of PCP and NMDA receptors. In: De Souza EB, Clouet D, London ED (eds) Sigma, PCP and NMDA receptors. National Institute on Drug Abuse Research Monograph Series 133 (DHHS publication no 93-3587). US Government Printing Office, Washington DC, pp 159–183

    Google Scholar 

  • Largent BL, Gundlach AL, Snyder SH (1984) Psychotomimetic opiate receptors labeled and visualized with (+)-[3H]3-(3-hydroxyphenyl)-N-(1-propyl)piperidine. Proc Natl Acad Sci USA 81:4983–4987

    Article  PubMed  CAS  Google Scholar 

  • Largent BL, Wikström, Snowman AM, Snyder SH (1988) Novel antipsychotic drugs share high affinity for sigma receptors. Eur J Pharmacol 155:345–347

    Article  PubMed  CAS  Google Scholar 

  • Lasagna L, Pearson JW (1965) Analgesic and psychotomimetic properties of dexoxadrol. Proc Soc Exp Biol Med 118:353–354

    Google Scholar 

  • Leander JD, Rathburn RC, Zimmerman DM (1988) Anticonvulsant effects of phencyclidine-like drugs: relation to N-methyl-D-aspartate antagonism. Brain Res 454:368–372

    Article  PubMed  CAS  Google Scholar 

  • Lehmannmaster VD, Geyer MA (1991) Spatial and temporal patterning distinguishes the locomotor activating effects of dizocilpine and phencyclidine in rats. Neuropharmacology 30:629–636

    Article  Google Scholar 

  • Lerma J, Kushner L, Spray DC, Bennett MVL, Zukin RS (1989) mRNA from NCB-20 cells encodes the N-methyl-D-aspartate/phencyclidine receptor: a Xenopus oocyte study. Proc Natl Acad Sci USA 86:1708–1711

    Article  PubMed  CAS  Google Scholar 

  • Lerma L, Zukin RS, Bennett MVL (1990) Glycine decreases desensitization of N-methyl-D-aspartate receptors expressed in Xenopus oocytes and is required for NMDA responses. Proc Natl Acad Sci USA 87:2354–2358

    Article  PubMed  CAS  Google Scholar 

  • Liljequist S, Ossowska K, Grabowska-Andén M, Anden N-E (1991) Effect of the NMDA receptor antagonist, MK-801, on locomotor activity and on the metabolism of dopamine in various brain areas of mice. Eur J Pharmacol 195:55–61

    Article  PubMed  CAS  Google Scholar 

  • Linders JTM, Monn JA, Mattson MV, George C, Jacobson AE, Rice KA (1993) Sythesis and binding properties of MK-801 isothiocyanates; (+)-3-isothiocyanato-5-methyl-10,11-dihydro-5H-dizenzo[a,d]cyclohepten-5-,10-imine hydrochloride: a new, potent and selective electrophilic affinity ligand for the NMDA receptor-coupled phencyclidine binding site. J Med Chem 36:2499–2407

    Article  PubMed  CAS  Google Scholar 

  • Lodge D, Anis NA (1982) Effects of phencyclidine on excitatory amino acid activation of spinal interneurones in the cat. Eur J Pharmacol 77:203–204

    Article  PubMed  CAS  Google Scholar 

  • Lodge D, Johnson KM (1990) Noncompetitive excitatory amino acid receptor antagonists. Trends Pharmacol Sci 11:81–86

    Article  PubMed  CAS  Google Scholar 

  • Löscher W, Honack D (1991) The novel competitive N-methyl-D-aspartate (NMDA) antagonist CGP 37849 preferentially induces phencyclidine-like behavioral effects in kindled rats: attenuation by manipulation of dopamine, alpha-1 and serotonin1A receptors. J Pharmacol Exp Ther 257:1146–1153

    PubMed  Google Scholar 

  • Lu Y, France CP, Woods JH (1992) Tolerance to the cataleptogenic effect of the N-methyl-D-aspartate (NMDA) receptor antagonists in pigeons: cross tolerance between PCP-like compounds and competitive NMDA antagonists. J Pharmacol Exp Ther 263:499–504

    PubMed  CAS  Google Scholar 

  • Lutfy K, Hurlbut DE, Weber E (1993) Blockade of morphine-induced analgesia and tolerance in mice by MK-801. Brain Res 616:83–88

    Article  PubMed  CAS  Google Scholar 

  • Lukas SE, Griffiths RR, Brady JV, Wurster RM (1984) Phencyclidine-analogue self-injection by the baboon. Psychopharmacology 83:316–320

    Article  PubMed  CAS  Google Scholar 

  • Manallack DT, Lodge D, Beart PM (1989) Subchronic administration of MK-801 in the rat decreases cortical binding of [3H]D-AP5, suggesting down-regulation of the cortical N-methyl-D-aspartate receptors. Neuroscience 30:87–94

    Article  PubMed  CAS  Google Scholar 

  • Mansbach RS, Geyer MA (1989) Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology 2:299–308

    Article  PubMed  CAS  Google Scholar 

  • Mansbach RS, Willetts J, Jortani SA, Balster RL (1991) NMDA antagonists: lack of an antipunishment effect in squirrel monkeys. Pharmacol Biochem Behav 39:977–981

    Article  PubMed  CAS  Google Scholar 

  • Maragos WF, Chu DCM, Greenamyre JT, Penney JB, Young AB (1986) High correlation between the localization of [3H] TCP binding and NMDA receptors. Eur J Pharmacol 123:173–174

    Article  PubMed  CAS  Google Scholar 

  • Maragos WF, Penney JB, Young AB (1988) Anatomic correlation of NMDA and [3H] TCP-labelled receptors m rat brain. J Neurosci 8:493–501

    PubMed  CAS  Google Scholar 

  • Marek P, Ben-Eliyahu S, Gold M, Liebeskind JC (1991) Excitatory amino acid antagonists (kynurenic acid and NK-801) attenuate the development of morphine tolerance in the rat. Brain Res 547:77–81

    Article  PubMed  CAS  Google Scholar 

  • Maren S, Baudry M, Thompson RF (1991) Differential effects of ketamine and Mk-801 on the induction of long-term potentiation. Neuroreport 2:239–242

    Article  PubMed  CAS  Google Scholar 

  • Marquis KL, Paquette NC, Gussio RP, Moreton JE (1989a) Comparative electroencephalographic and behavioral effects of phencyclidine, (+)-SKF-10,047 and MK-801 in rats. J Pharmacol Exp Ther 251:1104–1112

    PubMed  CAS  Google Scholar 

  • Marquis KL, Webb MG, Moreton JE (1989b) Effects of fixed-ratio size and dose on phencyclidine self-administration by rats. Psychopharmacology 97:179–182

    Article  PubMed  CAS  Google Scholar 

  • Martin BR, Boni J (1990) Pyrolysis and inhalation studies with phencyclidine and cocaine. In: Chang CN, Hawks RL (eds) Research findings on smoking of abused substances. National Institute on Drug Abuse Research Monograph 99. DHHS publication no (ADM) 90-1690. US Government Printing Office, Washington DC, pp 141–158

    Google Scholar 

  • Martin BR, Katzen JS, Woods JA, Tripathi HL, Harris LS, May EL (1984) Stereoisomers of [3H]-N-allylnormetazocine bind to different sites in mouse brain. J Pharmacol Exp Ther 231:539–544

    PubMed  CAS  Google Scholar 

  • Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine- and nalorphine-like drugs in the nondependent and morphine dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    PubMed  CAS  Google Scholar 

  • Massey BM, Wessinger WD (1990a) Alterations in rat brain [3H]-TCP binding following chronic phencyclidine administration. Life Sci 47:139–143

    Article  Google Scholar 

  • Massey BM, Wessinger WD (1990b) Effects of terminating chronic phencyclidine on schedule-controlled behavior in rats. Pharmacol Biochem Behav 36:117–121

    Article  PubMed  CAS  Google Scholar 

  • McLamb RL, Williams LR, Nanry KP, Wilson WA, Tilson HA (1990) MK-801 impedes the acquisition of spatial memory task in rats. Pharmacol Biochem Behav 37:41–45

    Article  PubMed  CAS  Google Scholar 

  • McMillan DE, Hardwick WC, de Costa BR, Rice KC (1991) Effects of drugs that bind to PCP and sigma receptors on punished respoding. J Pharmacol Exp Ther 258:1015–1018

    PubMed  CAS  Google Scholar 

  • Moerschbaecher JM (1992) The role of excitatory amino acids in learning and memory. In: Simon RP (ed) Excitatory amino acids. Fidia Research Foundation Symposium series, vol 9. Thieme Medical, New York, pp 211–214

    Google Scholar 

  • Monaghan DT, Cotman CW (1986) Identification and properties of NMDA receptors in rat brain synaptic plasma membranes. Proc Natl Acad Sci U S A 83:7532–7536

    Article  PubMed  CAS  Google Scholar 

  • Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29:365–402

    Article  PubMed  CAS  Google Scholar 

  • Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221

    Article  PubMed  CAS  Google Scholar 

  • Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakashini S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354:31–37

    Article  PubMed  CAS  Google Scholar 

  • Morris RGM, Anderson E, Lynch G, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-asprtate receptor antagonist, AP-5. Nature 319:774–776

    Article  PubMed  CAS  Google Scholar 

  • Mount H, Boksa P, Chaudieu I, Quirion R (1990) Phencyclidine and related compounds evoke [3H] dopamine release from rat mesencephalic cell cultures by a mechanism indepedent of the phencyclidine receptor, sigma-binding site, or dopamine uptake site. Can J Physiol Pharmacol 68:1200–1206

    Article  PubMed  CAS  Google Scholar 

  • Musacchio JM (1990) The psychotomimetic effects of opiates and the σ receptor. Neuropsychopharmacology 3:191–200

    PubMed  CAS  Google Scholar 

  • Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1990) Excitotoxic amino acids and neuropsychiatric disorders. Annu Rev Pharmacol Toxicol 30:47–71

    Article  PubMed  CAS  Google Scholar 

  • Osawa Y, Davila JC (1993) Phencyclidine, a psychotomimetic agent and drug of abuse, is a suicide inhibitor of brain nitric oxide synthase. Biochem Biophys Res Commun 194:1435–1439

    Article  PubMed  CAS  Google Scholar 

  • Overton P, Clark D (1992) Electrophysiological evidence that intrastriatally administered N-methyl-D-aspartate augments striatal dopamine tone in the rat. J Neurotransmission 4:1–14

    Article  CAS  Google Scholar 

  • Palfreyman MG, Baron B (1991) Non-competitive NMDA antagonists, acting at the glycine site. In: Meldrum BS (ed) Excitatory amino acid antagonists. Blackwell Scientific, Oxford, pp 101–129

    Google Scholar 

  • Pfeiffer A, Brantl V, Herz A, Emrich HM (1986) Psychotomimesis mediated by κ opiate receptors. Science 233:774–776

    Article  PubMed  CAS  Google Scholar 

  • Poling AD, White FJ, Appel JB (1979) Discriminative stimulus properties of phencyclidine. Neuropharmacology 18:459–463

    Article  PubMed  CAS  Google Scholar 

  • Porter JH, Wiley JL, Balster RL (1989) Effects of phencyclidine-like drugs on punished behavior in rats. J Pharmacol Exp Ther 248:997–1002

    PubMed  CAS  Google Scholar 

  • Pulvirenti L, Maldonado-Lope R, Koob GF (1994) NMDA receptors in the nucleus accumbens modulate intraenous cocaine but not heroin self-administration. Brain Res 594:327

    Article  Google Scholar 

  • Quirion R, Chicheportiche R, Contreras PC, Johnson KM, Lodge D, Tam SW, Woods JH, Zukin SR (1987) Classification and nomenclature of phencyclidine and sigma receptor sites. Trends Neurosci 10:444–446

    Article  CAS  Google Scholar 

  • Quirion R, Bowen WD, Itzhak Y, Junien J-L, Musacchio JM, Rothman RB, Su T-P, Tam SW, Taylor DP (1992) Classification of sigma binding sites: a proposal. In: Kamenka J-M, Domino EF (eds) Multiplesigma and PCP receptor ligands: mechanisms for neuromodulation and neuroprotection? NPP, Ann Arbor, pp 959–965

    Google Scholar 

  • Rahbar F, Fomufod A, White D, Westney LS (1993) Impact of intrauterine exposure to phencyclidine (PCP) and cocaine on neonates. J Natl Med Assoc 85:349–352

    PubMed  CAS  Google Scholar 

  • Ransom RW, Stec NL (1988) Cooperative modulation of [3H]MK-801 binding to the N-methyl-D-aspartate receptor ion-channel complex by L-glutamate, glycine and polyamines. J Neurochem 51:830–836

    Article  PubMed  CAS  Google Scholar 

  • Rao TS, Contreras PC, Wood PL (1990a) Are N-methyl-D-aspartate (NMDA) and phencyclidine (PCP) receptors always functionally coupled to each other? Neurochem Int 1:1–8

    Article  Google Scholar 

  • Rao TS, Kim HC, Lehmann J, Martin LL, Wood PL (1990b) Selective activation of dopaminergic pathways in the mesocortex by compounds that act at the phencyclidine (PCP) binding site: tentative evidence for PCP recognition sites not coupled to N-methyl-D-aspartate (NMDA) recetors. Neuropharmacology 29:225–230

    Article  PubMed  CAS  Google Scholar 

  • Reynolds IJ, Miller RJ (1988) Multiple sites for the regulation of the N-methyl-D-aspartate receptor. Mol Pharmacol 33:581–584

    PubMed  CAS  Google Scholar 

  • Reynolds IJ, Miller RJ (1989) Ifenprodil is a novel type of N-methyl-D-aspartate antagonist: interaction with polyamines. Mol Pharmacol 36:758–765

    PubMed  CAS  Google Scholar 

  • Reynolds IJ, Murphy SN, Miller RJ (1987) [3H]-labelled MK-801 binding to the excitatory ammo acid receptor complex from rat brain is enhanced by glycine. Proc Natl Acad Sci USA 84:7744–7748

    Article  PubMed  CAS  Google Scholar 

  • Risner ME (1982) Intravenous self-administration of phencyclidine and related compounds in the dog. J Pharmacol Exp Ther 221:637–643

    PubMed  CAS  Google Scholar 

  • Rogawski MA, Porter RJ (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 42:223–286

    PubMed  CAS  Google Scholar 

  • Rogawski MA, Yamaguchi S, Jones SM, Rice KC, Thurkauf A, Monn JA (1991) Anticonvulsant activity of the low affinity uncompetitive N-methyl- D-aspartate antagonist (+)-5-aminocarbyonyl-10,11-dihydro-5H-dibenz[a,d]cyclopeen-5,10-imine: comparison with the structural analogs dizocilpine (MK-801) and car-bamazepine. J Pharmacol Exp Ther 259:33–37

    Google Scholar 

  • Rothman RB, Reid AA, Monn JA, Jacobson AE, Rice KC (1989) The psychotomimetic drug phencyclidine labels 2 high affinity binding sites in guinea pig brain: Evidence for N-methyl-D-aspartate coupled and dopamine reuptake carrier-associated phencyclidine binding sites. Mol Pharmacol 36:887–896

    PubMed  CAS  Google Scholar 

  • Sanger DJ, Joly D (1991) The effects of NMDA antagonists on punished exploration in mice. Behav Pharmacol 2:57–63

    PubMed  Google Scholar 

  • Sanger DJ, Terry P, Katz JL (1992) Memantine has phencyclidine-like but not cocaine-like discriminative stimulus effects in rats. Behav Pharmacol 3:265–268

    PubMed  CAS  Google Scholar 

  • Shannon HE (1982) Pharmacological analysis of the phencyclidine-like discriminative stimulus properties of narcotic deriatives in rats. J Pharmacol Exp Ther 222:146–151

    PubMed  CAS  Google Scholar 

  • Sharma AC, Kulkarni SK (1991) MK-801 produces antianxiety effect in elevated plus-maze in mice. Drug Dev Res 22:251–258

    Article  CAS  Google Scholar 

  • Shoaib M, Stolerman IP (1992) MK-801 attenuates behavioural adaptation to chronic nicotine administration in rats. Br J Pharmacol 105:514–515

    PubMed  CAS  Google Scholar 

  • Siegel RK (1978) Phencyclidine and ketamine intoxication: A study of four populations of recreational users. In: Petersen RC, Stillman RC (eds) Phencyclidine (PCP) abuse: an appraisal. National Institute on Drug Abuse Research monograph 21. DHEW publication no (ADM) 78-728. US Government Printing Office, Washington DC, pp 119–147

    Google Scholar 

  • Singh L, Menzies R, Tricklebank MD (1990) The discriminative stimulus properties of (+) -HA-966 an antagonist at the glycine/N-methyl-D-aspartate receptor. Eur J Pharmacol 186:129–132

    Article  PubMed  CAS  Google Scholar 

  • Sircar R, Nichtenhauser R, Ieni JR, Zukin SR (1986) Characterization and autoradiographic visualization of (+)-[3H] SKF10,047 binding in rat and mouse brain: further evidence for phencyclidine /“sigma opiate” receptor commonality. J Pharmacol Exp Ther 247:681–588

    Google Scholar 

  • Skilling RS, Smullin DH, Larson AA (1988) Extracellular amino acid concentrations in the dorsal spinal cord of freely moving rats following veratridine and nociceptive stimulation. J Neurochem 51:127–132

    Article  PubMed  CAS  Google Scholar 

  • Slifer BL, Balster RL (1983) Reinforcing properties of stereoisomers of the putative sigma agonists N-allylnormetazocine and cyclazocine in rhesus monkeys. J Pharmacol Exp Ther 225:522–528

    PubMed  CAS  Google Scholar 

  • Slifer BL, Balster RL (1988) Phencyclidine-like discriminative stimulus effects of the stereoisomers of alpha- and beta-cyclazocine in rats. J Pharmacol Exp Ther 244:606–612

    PubMed  CAS  Google Scholar 

  • Slifer BL, Balster RL, Woolverton WL (1984) Behavioral dependence produced by continuous phencyclidine infusion in rhesus monkeys. J Pharmacol Exp Ther 230:399–406

    PubMed  CAS  Google Scholar 

  • Smith DJ, Perrotti JM, Mausell AL, Monroe PJ (1985) Ketamine analgesia is not related to an opiate action in the periaqueductal gray region of the rat brain. Pain 21:253–265

    Article  PubMed  CAS  Google Scholar 

  • Smith JB (1991) Situational specificity of tolerance to effects of phencyclidine on responding of rats under fixed-ratio and spaced-responding schedules. Psychopharmacologypharmacology 103:121–128

    Article  CAS  Google Scholar 

  • Snell LD, Johnson KM (1985) Antagonism of N-methyl-D-aspartate-induced transmitter release in the rat striatum by phencyclidine-like drugs and its relationship to turning behavior. J Pharmacol Exp Ther 235:50–57

    PubMed  CAS  Google Scholar 

  • Spell LD, Jones SM, Johnson KM (1987) Inhibition of N-methyl-D-aspartate-induced hippocampal [3H] norepinephrine release by phencyclidine is dependent upon potassium concentration. Neurosci Lett 78:333–337

    Article  Google Scholar 

  • Snell, LD, Yi S -J, Johnson KM (1988) Comparison of the effects of MK-801 and phencyclidine on catecholamine uptake and NMDA-induced norepinephrine phencyclidine release. Eur J Pharmacol 145:223–226

    Article  PubMed  CAS  Google Scholar 

  • Spain JW, Klingman GI (1985) Continuous intravenous infusion of phencyclidine in unrestrained rats results in the rapid induction of tolerance and physical dependence. J Pharmacol Exp Ther 234:415–424

    PubMed  CAS  Google Scholar 

  • Stewart J, Druhan JP (1993) Development of both conditioning and sensitization of the behavioral activating effects of amphetamine is blocked by the non-competitive NMDA receptor antagonist, MK-801. Psychopharmacology 110:125–132

    Article  PubMed  CAS  Google Scholar 

  • Sturgeon RD, Fesseler RG, Meltzer HY (1979) Behavioral rating scales for assessing phencyclidine -induced locomotor activity, stereotyped behavior and ataxia in rats. Eur J Pharmacol 59:169–179

    Article  PubMed  CAS  Google Scholar 

  • Sugihara H, Moriyoshi K, Ishii T, Masu M, Nakanishi S (1992) Structures and properties of ven isoforms of NMDA receptors generated by alternative of splicing. Biochem Biophys Res Comm 185:826–832

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Larson AA (1993) MK-801 and phencyclidine act at phencyclidine sites that are not linked to N-methyl-D-aspartate activity to inhibit behavioral sensitization to kainate. Neuroscience 54:773–779

    Article  PubMed  CAS  Google Scholar 

  • Sveinbjornsdottir S, Sander JWAS, Upton D, Thompson PJ, Patsalos PN, Hirt D, Emre M, Lowe D, Duncan JS (1993) The excitatory amino acid antagonist D-CPP-ene (SDZ EAA-494) in patients with epilepsy. Epilepsy Res 16:165–174

    Article  PubMed  CAS  Google Scholar 

  • Tabor BL,Smith-Wallace T, Yonekura ML (1990) Perinatal outcome associated with PCP versus cocaine use. Am J Drug Alcohol Abuse 16:337–348

    Article  PubMed  CAS  Google Scholar 

  • Tam SW (1983) Naloxone-inaccessible sigma receptor in rat central nervous system. Proc Natl Acad Sci U S A 80:6703–6707

    Article  PubMed  CAS  Google Scholar 

  • Tennant FS Jr, Rawson, RA, McCann M (1981) Withdrawal from chronic phencyclidine (PCP) depedence with desipramine. Am J Psychiatry 138:845–847

    PubMed  Google Scholar 

  • Thombs DL (1989) A review of PCP abuse trends and perceptions. Publ Health Rep 104:325–328

    CAS  Google Scholar 

  • Thompson DM, Morerschbaecher JM (1982) Phencyclidine in combination with pentobarbital: supra-additive effects on complex operant behavior in patas monkeys. Pharmacol Biochem Behav 16:159–165

    Article  PubMed  CAS  Google Scholar 

  • Thurkauf A, Zenk PC, Balster RL, May EL, George C, Carroll FI, Mascarella SW, Rice KC, Jacobson AE, Mattson MV (1988) Synthesis, absolute configuration, and molecular modeling study of etoxadrol, a potent phencyclidine-like agonist. J Med Chem 31:2257–2263

    Article  PubMed  CAS  Google Scholar 

  • Tiseo PJ, Inturrisi CE (1993) Attenuation and reversal of morphine tolerance by the competitive N-methyl-D-aspartate receptor antagonist, LY274614. J Pharmacol Exp Ther 264:1090–1096

    PubMed  CAS  Google Scholar 

  • Tricklebank MD, Singh L, Oles RJ, Preston C, Iversen SD (1989) The behavioural effects of MK-801: a comparison with antagonists acting non-competitively and competitively at the NMDA receptor. Eur J Pharmacol 167:127–135

    Article  PubMed  CAS  Google Scholar 

  • Troupin AS, Mendius JR, Cheng F, Risinge MW (1986) MK-801. In: Meldrum B, Porter R (eds) New anticonvulsant drugs. Libby, London, pp 191–201

    Google Scholar 

  • Trujillo KA, Akil H (1991) Inhibition of opiate tolerance by non-competitive Nmethyl-D-aspartate receptor antagonists. Brain Res 633:178–188

    Article  Google Scholar 

  • Vaccarino AL, Marek P, Kest B, Weber E, Keana JFW, Liebeskind JC (1993) NMDA receptor antagonists, MK-801 and ACEA-1011, prevent the development of tonic pain following subcutaneous formalin. Brain Res 615:331–334

    Article  PubMed  CAS  Google Scholar 

  • Vaupel DB, Cone EJ (1991) Pharmacodynamic and pharmacokinetic actions of ketocyclazocine enantiomers in the dog: absence of sigma-like or phencyclidine-like activity. J Pharmacol Exp Ther 256:211–221

    PubMed  CAS  Google Scholar 

  • Verdoorn TA, Kleckner NW, Dingledine R (1987) Rat brain N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Science 238:1114–1116

    Article  PubMed  CAS  Google Scholar 

  • Vignon J, Pinet V, Cerruti C, Kamenka J-M, Chicheportiche R (1988) [3H]N-[1-(2-benz(b)thiophenyl)-cyclohexyl]piperidine([3H]BTCP): a new phencyclidine analog selective for the dopamine uptake complex. Eur J Pharmacol 148:427–436

    Article  PubMed  CAS  Google Scholar 

  • Vincent JP, Kartalovski B, Geneste P, Kamenka JM, Lazdunski M (1979) Interaction of phencyclidine (“angel dust”) with a specific receptor in rat brain membranes. Proc Natl Acad Sci USA 76:4678–4682

    Article  PubMed  CAS  Google Scholar 

  • Wachsman L, Scheutz S, Chan LS, Wingert WA (1989) What hapens to babies exposed to phencyclidine (PCP) in utero? Am J Drug Alcohol Abuse 15:31–39

    Article  PubMed  CAS  Google Scholar 

  • Wahlestedt C, Golanov E, Yamamoto S, Yee F, Ericson H, Yoo H, Inturrisi CE, Reis DJ (1993) Antisense oligonucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischemic infarctions. Nature 363:260–264

    Article  PubMed  CAS  Google Scholar 

  • Walker JM, Bowen WD, Walker FO, Matsumoto RR, de Costa R, Rice KC (1990) Sigma receptors: biology and function. Pharmacol Rev 42:355–402

    PubMed  CAS  Google Scholar 

  • Ward L, Mason SE, Abraham WC (1990) Effects of the NMDA antagonists CPP and MK-801 on radial arm maze performance in rats. Pharmacol Biochem Behav 35:785–790

    Article  PubMed  CAS  Google Scholar 

  • Watkins JC, Evans RH (1981) Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21:165–204

    Article  PubMed  CAS  Google Scholar 

  • Watkins JC, Krosgaard-Larson P, Honoré T (1990) Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci 11:25–33

    Article  PubMed  CAS  Google Scholar 

  • Weber E, Sonders M, Quarum J, McLean S, Pou S, Keana JFW (1986) 1,3-Di(2-[5-3H]tolyl)guanidine: a selective ligand that labels s-type receptors for psychotomimetic opiates and antipsychotic drugs. Proc Natl Acad Sci USA 83:8784–8788

    Article  PubMed  CAS  Google Scholar 

  • Weissman AD, Casanova MF, Kleinman JE, DeSouza EB (1991) PCP and sigma receptors in brain are not altered after repeated exposure to PCP in humans. Neuropsychopharmacology 4:95–102

    PubMed  CAS  Google Scholar 

  • Wenger G (1982) Tolerance to phencyclidine in pigeons: cross-tolerance to ketamine. J Pharmacol Exp Ther 255:646–652

    Google Scholar 

  • Wessinger WD (1987) Behavioral dependence on phencyclidine in rats. Life Sci 41:355–360

    Article  PubMed  CAS  Google Scholar 

  • Wessinger WD, Owens SM (1991) Phencyclidine dependence: the relationship of dose and serum concentrations to operant behavioral effects. J Pharmacol Exp Ther 258:207–215

    PubMed  CAS  Google Scholar 

  • Wesson DR, Washburn P (1990) Current patterns of drug abuse that involve smoking. In: Chang CN, Hawks RL (eds) Research findings on smoking of abused substances. National Institute on Drug Abuse Research monograph 99. DHHS publication no (ADM) 90-1690. US Government Printing Office, Washington DC, pp 5–11

    Google Scholar 

  • Wiley JL, Balster RL (1992) Preclinical evaluation of N-methyl-D-aspartate antagonists for antianxiety effects: a review. In: Kamenka J-M, Domino EF (eds) Multiple sigma and PCP receptor ligands: mechanisms for neuromodulation and neuroprotection? NPP, Ann Arbor, pp 801–815

    Google Scholar 

  • Wiley JL, Balster RL (1993) NMDA antagonists: a novel class of anxiolytics? In: Hamon M, Ollat H, Thiébot M-H (eds) Anxiety: neurobiology, clinic and therapeutic perspectives. Libbey Eurotext/Colloque INSERM 232, Montrouge, pp 177–184

    Google Scholar 

  • Wiley J, Balster RL (1994) Effects of competitive and noncompetitive N-methyl-Daspartate (NMDA) antagonists in squirrel monkeys trained to discriminate DCPPene (SDZ EAA 494) from vehicle. Psychopharmacology 116:266–272

    Article  PubMed  CAS  Google Scholar 

  • Wiley JL, Porter JH, Compton AD, Balster RL (1992) Antipunishment effects of acute and repeated administration of phencyclidine and NPC 12626 in rats. Life Sci 50:1519–1528

    Article  PubMed  CAS  Google Scholar 

  • Willetts J, Bobelis DJ, Balster RL (1989) Drug discrimination based on the competitive N-methyl-D-aspartate antagonist, NPC 12626. Psychopharmacology 99:458–462

    Article  PubMed  CAS  Google Scholar 

  • Willetts J, Balster RL, Leander JD (1990) The behavioral pharmacology of NMDA receptor antagonists. Trends Pharmacol Sci 11:423–428

    Article  PubMed  CAS  Google Scholar 

  • Willetts J, Morse WH, Lee-Parritz D (1992) Behavioral pharmacology of NMDA antagonists. In: Simon RP (ed) Excitatory amino acids. Fidia Research Foundation symposium series, vol 9. Thieme Medical, New York, pp 203–210

    Google Scholar 

  • Willetts J, Clissold DB, Hartman TL, Brandsgaard RR, Hamilton GS, Ferkany JW (1993) Behavioral pharmacology of NPC 17742, a competitive N-methyl-Daspartate antagonist. J Pharmacol Exp Ther 265:1055–1062

    PubMed  CAS  Google Scholar 

  • Williams K (1993) Ifendopril discriminates between subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 44:851–859

    PubMed  CAS  Google Scholar 

  • Winger G, France CP, Woods JH (1991) Intravenous self-injection in rhesus In: Meldrum BS, Moroni F, Simon RP (eds) Excitatory amino acids. Fidia Research Foundation symposium series, vol 5. Raven, New York, pp 539–545

    Google Scholar 

  • Winslow JT, Insel TR, Trullas R, Skolnick P (1990) Rat pup isolation calls are reduced by functional antagonists of the NMDA receptor complex. Eur J Pharmacol 190:11–21

    Article  PubMed  CAS  Google Scholar 

  • Wish ED (1986) PCP and crime: just another illicit drug? In: Clouet DH (ed) Pheycyclidine: an update. National Institute on Drug Abuse Research monograph 64 (DHHS publication no ADM86–1443). US Government Printing Office, Washington DC, pp 174–189

    Google Scholar 

  • Wong EHF, Kemp JA (1991) Sites for antagonism on the N-methyl-D-aspartate receptor channel complex. Annu Rev Pharmacol Toxicol 31:401–425

    Article  PubMed  CAS  Google Scholar 

  • Wong EHF, Kemp JA, Preistley T, Knight AR, Woodruff GN, Iversen LL (1986) The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Natl Acad Sci USA 83:7104–7108

    Article  PubMed  CAS  Google Scholar 

  • Wong EHF, Knight AR, Ransom R (1987) Glycine modulates [3H]MK-801 binding to the NMDA receptor in rat brain. Eur J Pharmacol 142:487–488

    Article  PubMed  CAS  Google Scholar 

  • Wood PL, Rao TS (1989) NMDA-coupled and uncoupled forms of the PCP receptor — Preliminary in vivo evidence for PCP receptor subtypes. Psychiatry 13:519–523

    CAS  Google Scholar 

  • Woods JH, Winger G (1991) Phencyclidine (PCP) and related substances. In: Drug abuse and drug abuse research. Third triennial report to Congress from the Secretary, Department of Health and Human Services. DHHS publication no (ADM)91-1708 US Government Printing Office, Washington DC, pp 145–159

    Google Scholar 

  • Woods JH, Koek W, France CP, Moerschbaecher Jm (1991) Behavioral effects of NMDA antagonists. In: Meldrum BS (ed) Excitatory amino acid antagonists. Blackwell Scientific, Oxford, pp 237–264

    Google Scholar 

  • Woolverton WL, Balster RL (1979) Tolerance to the behavioral effects of phencyclidine: importance of behavioral and pharmacological variables. Psychopharmacology 64:19–24

    Article  PubMed  CAS  Google Scholar 

  • Woolverton WL, Balster RL (1981) Effects of combinations of phencyclidine and pentobarbital on fixed-interval performance in rhesus monkeys. J Pharmacol Exp Ther 217:611–618

    PubMed  CAS  Google Scholar 

  • Xu X, Domino EF (1994) Phencyclidine-induced behavioral sensitization. Pharmacol Biochem Behav 47:603–608

    Article  PubMed  CAS  Google Scholar 

  • Yamakura T, Mori H, Masaki H, Shimoji K, Mishina M (1993) Different sensitivities of NMDA receptor channel subtypes to non-competitive antagonists. Neuroreport 4:687–690

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Chiodo LA, Freeman AS (1992) Electrophysiological effects of MK-801 on rat nigrostriatal and mesoaccumbal dopaminergic neurons. Brain Res 590:153–163

    Article  PubMed  CAS  Google Scholar 

  • Zukin SR, Zukin RL (1979) Specific [3H]phencyclidine binding in rat central nervous system. Proc Natl Acad Sci USA 76:5372–5376

    Article  PubMed  CAS  Google Scholar 

  • Zukin RS, Zukin SR (1988) Phencyclidine, σ and NMDA receptors: emerging concepts. In: Domino EF, Kamenka J-M (eds) Sigma and phencyclidine-like compounds as molecular probes in biology. NPP, Ann Arbor, pp 407–424

    Google Scholar 

  • Zukin SR, Brady KT, Slifer BL, Balster RL (1984) Behavioral and biochemical stereoselectivity of σ opiate/PCP receptor. Brain Res 294:174–177

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balster, R.L., Willetts, J. (1996). Phencyclidine: A Drug of Abuse and a Tool for Neuroscience Research. In: Schuster, C.R., Kuhar, M.J. (eds) Pharmacological Aspects of Drug Dependence. Handbook of Experimental Pharmacology, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60963-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60963-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64631-7

  • Online ISBN: 978-3-642-60963-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics