Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 118))

Abstract

Shortly after the petals fall from the flower of the poppy plant, the remaining seed capsule is slit open with a sharp knife, rendering a milky sap which, when dried, yields the substance known as opium. Although people have known since ancient times that they could relieve their pain and feel pleasure by eating or smoking this substance, it was not until the early 1800s that the substance responsible for opium’s effects was isolated and given the name morphine, after Morpheus, the Greek god of dreams. Morphine’s alkaline properties were different from those of other plant-derived products, thus its isolation from opium marked the beginning of alkaloid chemistry. Since then other alkaloids have been isolated from opium, including papaverine, thebaine and codeine (WASACZ 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JU, Holtzman SG (1990a) Pharmacologic characterization of the sensitization to the rate-decreasing effects of naltrexone induced by acute opioid pretreatment in rats. J Pharmacol Exp Ther 253:483–489

    PubMed  CAS  Google Scholar 

  • Adams JU, Holtzman SG (1990b) Tolerance and dependence after continuous morphine infusion from osmotic pumps measured by operant responding in rats. Psychopharmacology 100:451–458

    Article  PubMed  CAS  Google Scholar 

  • Adams JU, Holtzman SG (1991) Effects of receptor-selective opioids on operant behavior in morphine-treated and untreated rats. Pharmacol Biochem Behav 38:195–200

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian GK (1978) Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine. Nature 267:186–188

    Article  Google Scholar 

  • Akil H, Watson SJ, Young E, Lewis ME, Khachaturian H, Walker JM (1984) Endogenous opioids: biology and function. Annu Rev Neurosci 7:223–255

    Article  PubMed  CAS  Google Scholar 

  • Attali B, Gouardères C, Mazarguil H, Audigier Y, Cros J (1982) Evidence for multiple “kappa” binding sites by use of opioid peptides in the guineapig lumbosacral spinal cord. Neuropeptides 3:53–64

    Article  PubMed  CAS  Google Scholar 

  • Bals-Kubik R, Ableitner A, Herz A, Shippenberg TS (1993) Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J Pharmacol Exp Ther 264:489–495

    PubMed  CAS  Google Scholar 

  • Barrett RW, Vaught JL (1982) The effects of receptor selective opioid peptides on morphine-induced analgesia. Eur J Pharmacol 80:427–430

    Article  PubMed  CAS  Google Scholar 

  • Basbaum AI, Fields HL (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309–338

    Article  PubMed  CAS  Google Scholar 

  • Bayer BM, Daussin S, Hernandez M, Irvin L (1990) Morphine inhibition of lymphocyte activity is mediated by an opioid-dependent mechanism. Neuropharm 29:369–374

    Article  CAS  Google Scholar 

  • Bertalmio AJ, Woods JH (1987) Differentiation between mu and kappa receptor-mediated effects in opioid drug discrimination: apparent pA2 analysis. J Pharmacol Exp Ther 243:591–597

    PubMed  CAS  Google Scholar 

  • Bertalmio AJ, Woods JH (1989) Reinforcing effect of alfentanil is mediated by mu opioid receptors: apparent pA2 analysis. J Pharmacol Exp Ther 251:455–460

    PubMed  CAS  Google Scholar 

  • Bickel WK, Stitzer ML, Bigelow GE, Liebson IA, Jasinski DR, Johnson RE (1988) Buprenorphine: dose-related blockade of opioid challenge effects in opioid dependent humans. J Pharmacol Exp Ther 247:47–53

    PubMed  CAS  Google Scholar 

  • Bickel WK, Bigelow GE, Preston KL, Liebson IA (1989) Opioid drug discrimination in humans: stability, specificity and relation to self-reported drug effect. J Pharmacol Exp Ther 251:1053–1063

    PubMed  CAS  Google Scholar 

  • Bowen WD, Gentlemen S, Herkenham M, Pert CB (1981) Interconverting mu and delta forms of the opiate receptors in rat striatal patches. Proc Natl Acad Sci USA 78:4818–4822

    Article  PubMed  CAS  Google Scholar 

  • Bozarth MA, Wise RA (1981) Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sci 28:551–555

    Article  PubMed  CAS  Google Scholar 

  • Brecher EM (1972) Licit and illicit drugs. Little Brown, Toronto

    Google Scholar 

  • Bryant HU, Roudebush RE (1990) Suppressive effects of morphine pellet implants on in vivo parameters of immune function. J Pharmacol Exp Ther 255:410–414

    PubMed  CAS  Google Scholar 

  • Bryant HU, Bernton EW, Holaday JW (1987) Immunosuppressive effects of chronic morphine treatment in mice. Life Sci 41:1731–1738

    Article  PubMed  CAS  Google Scholar 

  • Bryant HU, Bernton EW, Holaday JW (1988) Morphine pellet-induced immunomodulation in mice: temporal relationships. J Pharmacol Exp Ther 245:913–920

    PubMed  CAS  Google Scholar 

  • Calcagnetti DJ, Holtzman SG (1991) Delta opioid antagonist, naltrindole, selectively blocks analgesia induced by DPDPE but not DAGO or Morphine. Pharmacol Biochem Behav 38:185–190

    Article  PubMed  CAS  Google Scholar 

  • Chang K-J, Cuatrecasas P (1979) Multiple opiate receptors: enkaphalin and morphine bind to receptors of different specificity. J Biol Chem 254:2610–2618

    PubMed  CAS  Google Scholar 

  • Chen Y, Mestek A, Liu J, Hurley JA, Yu L (1993) Molecular cloning and functional expression of a,u-opioid receptor from rat brain. Mol Pharmacol 44:8–12

    PubMed  CAS  Google Scholar 

  • Childers SR (1991) Opioid receptor-coupled second messenger systems. Life Sci 48:1991–2003

    Article  PubMed  CAS  Google Scholar 

  • Christie MJ, Williams JT, North RA (1987) Cellular mechanism of opioid tolerance: studies in single brain neurons. Mol Pharmacol 32:633–638

    PubMed  CAS  Google Scholar 

  • Cooper SJ, Jackson A, Kirkham TC, Turkish S (1988) Endorphins, opiates and food intake. In: Rodgers RJ, Cooper SJ (eds) Endorphins, opiates and behavioural processes. Wiley, New York, pp 143–186

    Google Scholar 

  • Craft RM, Dykstra LA (1990) Differential cross-tolerance to opioids in squirrel monkeys responding under a shock titration schedule. J Pharmacol Exp Ther 252:945–952

    PubMed  CAS  Google Scholar 

  • Craft RM, Dykstra LA (1992a) Agonist and antagonist activity of kappa opioids in the squirrel monkey: I. Antinociception and urine output. J Pharmacol Exp Ther 260:327–333

    PubMed  CAS  Google Scholar 

  • Craft RM, Dykstra LA (1992b) Agonist and antagonist activity of kappa opioids in the squirrel monkey: II. Effect of chronic morphine treatment. J Pharmacol Exp Ther 260:334–342

    PubMed  CAS  Google Scholar 

  • Craft RM, Dykstra LA (1993) Morphine antagonizes U50, 488’s effects in squirrel monkey shock titration procedure. Eur J Pharmacol 234:199–207

    Article  PubMed  CAS  Google Scholar 

  • Craft RM, Picker MJ, Dykstra LA (1989) Differential cross-tolerance to opioid agonists in morphine-tolerant pigeons responding under a schedule of food presentation. J Pharmacol Exp Ther 249:386–393

    PubMed  CAS  Google Scholar 

  • Creese I, Snyder SH (1975) Receptor binding and pharmacological activity of opiates in the guinea-pig intestine. J Pharmacol Exp Ther 194:205–219

    PubMed  CAS  Google Scholar 

  • DeLander GE, Mosberg HI, Porreca F (1992) Involvement of adenosine in antinociception produced by spinal or supraspinal receptor-selective opioid agonists: dissociation from gastrointestinal effects in mice. J Pharmacol Exp Ther 263:1097–1104

    PubMed  CAS  Google Scholar 

  • Deneau G, Yanagita T, Seevers MH (1969) Self-administration of psychoactive substances by the monkey. Psychopharmacology 16:30–48

    Article  CAS  Google Scholar 

  • Devlin T, Shoemaker WJ (1990) Characterization of kappa opioid binding using dynorphin A1–3 and U69 593 in the rat brain. J Pharmacol Exp Ther 253:749–759

    PubMed  CAS  Google Scholar 

  • Di Chiara GD, North RA (1992) Neurobiology of opiate abuse. Trends Pharmacol Sci 13:185–193

    Article  PubMed  Google Scholar 

  • Donahoe RM, Nicholson JKA, Madden JJ, Donahoe F, Shafer DA, Gordon D, Bokos P, Falek A (1986) Coordinate and independent effects of heroin, cocaine and alcohol abuse on T-cell E-rosette formation and antigenic marker expression. Clin Immunol Immunopathol 41:254–264

    Article  PubMed  CAS  Google Scholar 

  • Doty P, Picker MJ, Dykstra LA (1989) Differential cross-tolerance to opioid agonists in morphine-tolerant squirrel monkeys responding under a schedule of food presentation. Eur J Pharmacol 174:171–180

    Article  PubMed  CAS  Google Scholar 

  • Drower EJ, Stapelfeld A, Rafferty MF, de Costa BR, Rice KC, Hammond DL (1991) Selective antagonism by naltrindole of the antinociceptive effects of the delta opioid agonist cyclic[D-Penicillamine2-D-Penicillamine5] enkephalin in the rat. J Pharmacol Exp Ther 259:725–731

    PubMed  CAS  Google Scholar 

  • Dworkin SI, Guerin GF, Goeders NE, Smith JE (1988) Kainic acid lesions of the nucleus accumbens selectively attenuate morphine self-administration. Pharmacol Biochem Behav 29:175–181

    Article  PubMed  CAS  Google Scholar 

  • Dykstra LA, Massie CA (1988) Antagonism of the analgesic effects of mu and kappa opioid agonists in the squirrel monkey. J Pharmacol Exp Ther 246:813–821

    PubMed  CAS  Google Scholar 

  • Dykstra LA, Gmerek DE, Winger G, Woods JH (1987a) Kappa opioids in rhesus monkeys. I. Diuresis, sedation, analgesia and discriminative stimulus effects. J Pharmacol Exp Ther 242:413–420

    PubMed  CAS  Google Scholar 

  • Dykstra LA, Gmerek DE, Winger G, Woods JH (1987b) Kappa opioids in rhesus monkeys. II. Analysis of the antagonistic actions of quadazocine and β-funaltrexamine. J Pharmacol Exp Ther 242:421–427

    PubMed  CAS  Google Scholar 

  • Evans CJ, Keith DE Jr, Morrison H, Magendzo K, Edwards RH (1992) Cloning of a delta opioid receptor by functional expression. Science 258:1952–1955

    Article  PubMed  CAS  Google Scholar 

  • Fecho K, Dykstra LA, Lysle DT (1993) Evidence for β-adrenergic receptor involvement in the immunomodulatory effects of morphine. J Pharmacol Exp Ther 265:1079–1087

    PubMed  CAS  Google Scholar 

  • Foley KM (1989) The rational use of analgesics in the management of patients with acute and chronic pain. Clin Neurosurg 35:360–384

    PubMed  CAS  Google Scholar 

  • France CP, Morse WH (1989) Pharmacological characterization of supersensitivity to naltrexone in squirrel monkeys. J Pharmacol Exp Ther 250:928–936

    PubMed  CAS  Google Scholar 

  • France CP, Woods JH (1985) Antagonistic and rate-suppressing effects of opioid antagonists in the pigeon. J Pharmacol Exp Ther 235:442–447

    PubMed  CAS  Google Scholar 

  • France CP, Woods JH (1987) β-funaltrexamine antagonizes the discriminative stimulus effects of morphine but not naltrexone in pigeons. Psychopharmacology 91:213–216

    Article  PubMed  CAS  Google Scholar 

  • France CP, Woods JH (1989) Discriminative stimulus effects of naltrexone in morphine-treated rhesus monkeys. J Pharmacol Exp Ther 250:937–943

    PubMed  CAS  Google Scholar 

  • France CP, Woods JH (1990) Discriminative stimulus effects of opioid agonists in morphine-dependent pigeons. J Pharmacol Exp Ther 254:626–632

    PubMed  CAS  Google Scholar 

  • Fraser HF, Harris LS (1967) Narcotic and narcotic antagonist analgesics. Annu Rev Pharmacol 7:277–300

    Article  PubMed  CAS  Google Scholar 

  • Fudala PJ, Johnson RE, Bunker E (1989) Abrupt withdrawal of buprenorphine following chronic administration. Clin Pharmacol Ther 45:186

    Google Scholar 

  • Fukuda K, Kato S, Mori K, Nishi M, Takeshima H (1993) Primary structures and expression from cDNAs of rat opioid receptor δ- and μ-subtypes. Fed Eur Biochem Soc 327:311–314

    Article  CAS  Google Scholar 

  • Gallagher M, King RA, Young NB (1983) Opiate antagonists improve spatial memory. Science 221:975–976

    Article  PubMed  CAS  Google Scholar 

  • Gellert VF, Holtzman SG (1979) Discriminative stimulus effects of naltrexone in the morphine-dependent rat. J Pharmacol Exp Ther 211:596–605

    PubMed  CAS  Google Scholar 

  • Gmerek DE, Dykstra LA, Woods JH (1987) Kappa opioids in rhesus monkeys. III. Dependence associated with chronic administration. J Pharmacol Exp Ther 242:428–436

    PubMed  CAS  Google Scholar 

  • Gmerek DE (1988) Physiological dependence on opioids. In: Rodgers RJ, Cooper SJ (eds) Endorphins, opiates and behavioural processes. Wiley, New York, pp 25–52

    Google Scholar 

  • Gogas KR, Hough LB, Eberle NB, Lyon RA, Glick SD, Ward SJ, Young RC, Parsons ME (1989) A role for histamine and H2-receptors in opioid antinociception. J Pharmacol Exp Ther 250:476–484

    PubMed  CAS  Google Scholar 

  • Goeders NE, Lane JD, Smith JE (1984) Self-administration of methionine enkephalin into the nucleus accumbens. Pharmacol Biochem Behav 20:451–455

    Article  PubMed  CAS  Google Scholar 

  • Goldberg SR, Schuster CR (1967) Conditioned suppression by a stimulus associated with nalorphine in morphine-dependent monkeys. J Exp Anal Behav 10:235–242

    Article  PubMed  CAS  Google Scholar 

  • Goldberg SR, Morse WH, Goldberg DM (1976) Some behavioral effects of morphine, naloxone and nalorphine in the squirrel monkey and the pigeon. J Pharmacol Exp Ther 196:625–636

    PubMed  CAS  Google Scholar 

  • Goldberg SR, Morse WH, Goldberg DM (1981) Acute and chronic effects of naltrexone and naloxone on schedule-controlled behavior of squirrel monkeys and pigeons. J Pharmacol Exp Ther 216:500–509

    PubMed  CAS  Google Scholar 

  • Gosnell BA (1987) Central structures involved in opioid-induced feeding. Fed Proc 46:163–167

    PubMed  CAS  Google Scholar 

  • Hammond DL (1986) Control systems for nociceptive afferent processing: the descending inhibitory pathways. In: Yaksh TL (ed) Spinal afferent processing. Plenum, New York, pp 391–416

    Google Scholar 

  • Heifetz SA, McMillan DE (1971) Development of behavioral tolerance to morphine and methadone using the schedule-controlled behavior of the pigeon. Psycho-pharmacologia 19:40–52

    Article  CAS  Google Scholar 

  • Heyman JS, Vaught JL, Mosberg HI, Haaseth RC, Porreca F (1989a) Modulation of m-mediated antinociception by δ agonists in the mouse: selective potentiation of morphine and normorphine by [D-Pen2, D-Pen5]enkephalin. Eur J Pharmacol 165:1–10

    Article  PubMed  CAS  Google Scholar 

  • Heyman JS, Jiang Q, Rothman RB, Mosberg HI, Porreca F (1989b) Modulation of m-mediated antinociception by δ agonists: characterization with antagonists. Eur J Pharmacol 169:43–52

    Article  PubMed  CAS  Google Scholar 

  • Hill HF, Mackie AM, Coda BA (1991) Patient-controlled analgesic infusion. Adv Pain Res Ther 18: 507 – 521

    Google Scholar 

  • Holtzman SG (1974) Behavioral effects of separate and combined administration of naloxone and d-amphetamine. J Pharmacol Exp Ther 189:51–60

    PubMed  CAS  Google Scholar 

  • Holtzman SG (1983) Discriminative stimulus properties of opioid agonists and antagonists. In: Cooper SJ (ed) Theory in psychopharmacology, vol II. Academic, New York, pp 2–45

    Google Scholar 

  • Holtzman SG (1985) Discriminative stimulus effects of morphine withdrawal in the dependent rat: suppression by opiate and nonopiate drugs. J Pharmacol Exp Ther 233:80–86

    PubMed  CAS  Google Scholar 

  • Holtzman SG, Locke KW (1988) Neural mechanisms of drug stimuli: experimental approaches. In: Colpaert FC, Balster RL (eds) Psychopharmacology series 4: transduction mechanisms of drug stimuli. Springer, Berlin Heidelberg New York, pp 139–153

    Google Scholar 

  • Horan P, de Costa BR, Rice KC, Porreca F (1991) Differential antagonism of U69, 593- and bremazocine-induced antinociception by (—)-UPHIT: evidence of kappa opioid receptor multiplicity in mice. J Pharmacol Exp Ther 257:1154–1161

    PubMed  CAS  Google Scholar 

  • Howell LL, Bergman J, Morse WH (1988) Effects of levorphanol and several kappaselective opioids on respiration and behavior in rhesus monkeys. J Pharmacol Exp Ther 245:364–372

    PubMed  CAS  Google Scholar 

  • Hughes J, Smith TW, Kosterlitz HW, Fothergil LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from brain with potent opiate agonist activity. Nature 258:577–579

    Article  PubMed  CAS  Google Scholar 

  • Hunter JC, Leighton GE, Meecham KG, Boyle SJ, Horwell DC, Rees DC, Hughes J (1990) CI-977, a novel and selective agonist for the κ-opioid receptor. Br J Pharmacol 101:183–189

    PubMed  CAS  Google Scholar 

  • Iwamoto ET (1981) Locomotor activity and antinociception after putative mu, kappa and sigma opioid receptor agonists in the rat: influence of dopaminergic agonists and antagonists. J Pharmacol Exp Ther 217:451–460

    PubMed  CAS  Google Scholar 

  • Jacob JJC, Michaud GM, Tremblay EC (1979) Mixed agonist-antagonist opiates and physical dependence. Br J Clin Pharmacol 7:291–296

    CAS  Google Scholar 

  • Jaffe JH (1990) Drug addiction and drug abuse. In: Gilman AG, Rall TW, Nies AS, Taylor P (eds) Goodman and Gilman’s the pharmacological basis of therapeutics. Pergamon, New York, pp 552–573

    Google Scholar 

  • Jaffe JH, Martin WR (1990) Opioid analgesics and antagonists. In: Gilman AG, Rall TW, Nies AS, Taylor P (eds) Goodman and Gilman’s the pharmacological basis of therapeutics. Pergamon, New York, pp 485–521

    Google Scholar 

  • Jasinski DR (1977) Assessment of the abuse potentiality of morphine-like drugs. In: Martin WR (ed) Drug Addiction I. Morphine, sedative-hypnotic and alcohol dependence. Springer, Berlin Heidelberg New York, pp 197–258 (Handbook of experimental pharmacology, vol 45)

    Google Scholar 

  • Jessell TM, Iverson LL (1977) Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature 268:549–551

    Article  PubMed  CAS  Google Scholar 

  • Jiang Q, Mosberg HI, Porreca F (1990) Modulation of the potency and efficacy of mu-mediated antinociception by delta agonists in the mouse. J Pharmacol Exp Ther 254:683–689

    CAS  Google Scholar 

  • Jiang Q, Takemori AE, Sultana M, Portoghese PS, Bowen WD, Mosberg HI, Porreca F (1991) Differential antagonism of opioid delta antinociception by [D-AIa2,Leu5,Cys6]enkephalin and naltrindole 5′-isothiocyanate: evidence for delta receptor subtypes. J Pharmacol Exp Ther 257:1069–1075

    PubMed  CAS  Google Scholar 

  • Johnson SM, Fleming WW (1989) Mechanisms of cellular adaptive sensitivity changes: applications to opioid tolerance and dependence. Pharmacol Rev 41:435–488

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P (1987) Sensitization to repeated morphine injection in the rat: possible involvement of A10 dopamine neurons. J Pharmacol Exp Ther 241:204–212

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Widerlöv E, Stanley D, Breese GR, Prange AJ Jr (1983) Enkephalin action on the mesolimbic system: a dopamine-dependent and a dopamine-independent increase in locomotor activity. J Pharmacol Exp Ther 227:229–237

    PubMed  CAS  Google Scholar 

  • Kamien JB, Bickel WK, Hughes JR, Higgins ST, Smith BJ (1993) Drug discrimination by humans compared to nonhumans: current status and future directions. Psychopharmacology 111:259–270

    Article  PubMed  CAS  Google Scholar 

  • Kieffer BL, Befort K, Gaveriaux-Ruff C, Hirth CG (1992) The δ-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci USA 89:12048–12052

    Article  PubMed  CAS  Google Scholar 

  • Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Pettit HO, Ettenberg A, Bloom FE (1984) Effects of opiate antagonists and their quaternary derivatives on heroin self-administration in the rat. J Pharmacol Exp Ther 229:481–486

    PubMed  CAS  Google Scholar 

  • Kosten TR, Kleber HD (1988) Buprenorphine detoxification from opioid dependence: a pilot study. Life Sci 42:635–641

    Article  PubMed  CAS  Google Scholar 

  • Kuhar MJ, Pert CB, Snyder SH (1973) Regional distribution of opiate receptor binding in monkey and human brain. Nature 245:447–450

    Article  PubMed  CAS  Google Scholar 

  • Kumor KM, Haertzen CA, Johnson RE, Kocher T, Jasinski D (1986) Human psychopharmacology of ketocyclazocine as compared with cyclazocine, morphine and placebo. J Pharmacol Exp Ther 238:960–968

    PubMed  CAS  Google Scholar 

  • Lahti RA, Mickelson MM, McCall JM, VonVoigtlander PF (1985) [3H] U-69593 A highly selective ligand for the opioid к receptor. Eur J Pharmacol 109:281–284

    Google Scholar 

  • Larson J-J, Arnt J (1984) Spinal 5-HT or NA uptake inhibition potentiates supraspinal morphine antinociception in rats. Acta Pharmacol Toxicol 54:72–75

    Article  Google Scholar 

  • Law PV, Hom DS, Loh HH (1982) Loss of opiate receptor activity in neuroblastoma X glioma NG 108-15 hybrid cells after chronic opiate treatment. Mol Pharmacol 22:1–4

    PubMed  CAS  Google Scholar 

  • Leander JD (1988) Buprenorphine is a potent kappa opioid receptor antagonist in pigeons and mice. Eur J Pharmacol 151:457–461

    Article  PubMed  CAS  Google Scholar 

  • Leander JD, Hart JC, Zerbe RL (1987) Kappa agonist-induced diuresis: evidence for stereo selectivity, strain differences, independence of hydration variables and a result of decreased plasma vasopressin levels. J Pharmacol Exp Ther 242:33–39

    PubMed  CAS  Google Scholar 

  • Leone P, Di Chiara G (1987) Blockade of D-1 receptors by SCH 23390 antagonizes morphine- and amphetamine-induced place preferences conditioning. Eur J Pharmacol 135:251–254

    Article  PubMed  CAS  Google Scholar 

  • Levine AS, Grace M, Billington CJ, Portoghese PS (1990) Norbinaltorphimine decreases deprivation and opioid-induced feeding. Brain Res 534:60–64

    Article  PubMed  CAS  Google Scholar 

  • Li S, Zhu J, Chen C, Chien Y-W, Deriel JK (1993) Molecular cloning and expression of a rat κ opioid receptor. Biochem J 295:629–633

    PubMed  CAS  Google Scholar 

  • Locke KW, Holtzman SG (1986a) Behavioral effects of opioid peptides selective for mu or delta receptors. I. Morphine-like discriminative stimulus effects. J Pharmacol Exp Ther 238:990–996

    PubMed  CAS  Google Scholar 

  • Locke KW, Holtzman SG (1986b) Behavioral effects of opioid peptides selective for mu or delta receptors. II. Locomotor activity in nondependent and morphine-dependent rats. J Pharmacol Exp Ther 238:997–1003

    PubMed  CAS  Google Scholar 

  • Loh HH, Smith AP (1990) Molecular characterization of opioid receptors. Ann Rev Pharmacol Toxicol 30:123–147

    Article  CAS  Google Scholar 

  • Lord JAH, Waterfield AA, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267:495–499

    Article  PubMed  CAS  Google Scholar 

  • Lukas SE, Brady JV, Griffiths RR (1986) Comparison of opioid self-injection and disruption of schedule-controlled performance in the baboon. J Pharmacol Exp Ther 238:924–931

    PubMed  CAS  Google Scholar 

  • Lysle DT, Coussons ME, Watts VJ, Bennett EH, Dykstra LA (1993) Morphineinduced alterations of immune status: dose dependency, compartment specificity, and antagonism by naltrexone. J Pharmacol Exp Ther 265:1071–1078

    PubMed  CAS  Google Scholar 

  • Magnan J, Paterson SJ, Tavani A, Kosterlitz HW (1982) The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties. Arch Pharmacol 319:197–205

    Article  CAS  Google Scholar 

  • Malmberg AB, Yaksh TL (1992) Isobolographic and dose-response analyses of the interaction between intrathecal mu and delta agonists: effects of naltrindole and its benzofuran analog (NTB). J Pharmacol Exp Ther 263:264–275

    PubMed  CAS  Google Scholar 

  • Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1988) Anatomy of CNS opioid receptors. Trends Neurosci 11:308–314

    Article  PubMed  CAS  Google Scholar 

  • Martin WR (1984) Pharmacology of opioids. Pharmacol Rev 35:283–323

    Google Scholar 

  • Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine- and nalorphine-like drugs in the non-dependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    PubMed  CAS  Google Scholar 

  • Mattia A, Vanderah T, Mosberg HI, Porreca F (1991) Lack of antinociceptive crosstolerance between [D-Pen2,D-Pen5]enkephalin and [D-AIa2] deltorphin II in mice: evidence for delta receptor subtypes. J Pharmacol Exp Ther 258:583–587

    PubMed  CAS  Google Scholar 

  • McDonough RJ, Madden JJ, Falek A, Shafer DA, Pline M, Gordon D, Bokos P, Kuehnle JC, Mendelson J (1980) Alteration of T and null lymphocyte frequencies in the peripheral blood of human opiate addicts: in vivo evidence for opiate receptor sites on T lymphocytes. J Immunol 125:2539–2543

    PubMed  CAS  Google Scholar 

  • McGaugh HL (1989) Involvement of hormonal and neuromodulatory systems in the regulation of memory storage. Annu Rev Neurosci 12:255–287

    Article  PubMed  CAS  Google Scholar 

  • McMillan DE, Morse WH (1967) Some effects of morphine and morphine antagonists on schedule-controlled behavior. J Pharmacol Exp Ther 157:175–184

    PubMed  CAS  Google Scholar 

  • McMillan DE, Wolf PS, Carchman RA (1970) Antagonism of the behavioral effects of morphine and methadone by narcotic antagonists in the pigeon. J Pharmacol Exp Ther 175:443–458

    PubMed  CAS  Google Scholar 

  • Mello NK, Mendelson JH, Kuehnle JC (1981) Buprenorphine self-administration by rhesus monkey. Pharmacol Biochem Behav 15:215–225

    Article  PubMed  CAS  Google Scholar 

  • Mello NK, Mendelson JH, Kuehnle JC (1982) Buprenorphine effects on human heroin self-administration: an operant analysis. J Pharmacol Exp Ther 223:30–39

    PubMed  CAS  Google Scholar 

  • Mello NK, Bree MP, Mendelson JH (1983) Comparison of buprenorphine and methadone effects on opiate self-administration in primates. J Pharmacol Exp Ther 225:378–386

    PubMed  CAS  Google Scholar 

  • Meng F, Xie G-X, Thompson RC, Mansour A, Goldstein A, Watson SJ, Akil H (1993) Cloning and pharmacological characterization of a rat κ opioid receptor. Proc Natl Acad Sci USA 90:9954–9958

    Article  PubMed  CAS  Google Scholar 

  • Melzack R (1990) The tragedy of needless pain. Sci Am 262:27–33

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ (1986) Multiple opioid systems and pain. Pain 27: 303 – 347

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ (1989) Kappa-opioid receptor-mediated antinociception in the rat. I. Comparative actions of mu- and kappa-opioids against noxious thermal, pressure and electrical stimuli. J Pharmacol Exp Ther 251:334–341

    PubMed  CAS  Google Scholar 

  • Millan MJ, Czlonkowski A, Lipkowski A, Herz A (1989) Kappa-opioid receptor-mediated antinocicpetion in the rat. II. Supraspinal in addition to spinal sites of action. J Pharmacol Exp Ther 251:342–350

    PubMed  CAS  Google Scholar 

  • Miller L, Shaw JS, Whiting EM (1986) The contribution of intrinsic activity to the action of opioids in vitro. Br J Pharmacol 87:595–601

    PubMed  CAS  Google Scholar 

  • Mjanger E, Yaksh TL (1991) Characteristics of dose-dependent antagonism by β-funaltrexamine of the antinociceptive effects of intrathecal mu agonists. J Pharmacol Exp Ther 258:544–550

    PubMed  CAS  Google Scholar 

  • Moerschbaecher JM, Thompson DM (1983) Differential effects of prototype opioid agonists on the acquisition of conditional discriminations in monkeys. J Pharmacol Exp Ther 226:738–748

    PubMed  CAS  Google Scholar 

  • Moerschbaecher JM, Mastropaolo, J Winsauer PJ, Thompson DM (1984) Effects opioids on accuracy of a fixed-ratio discrimination in monkeys and rats. J Pharmacol Exp Ther 230:541–549

    PubMed  CAS  Google Scholar 

  • Moerschbaecher JM, Brocklehurst C, Devia C, Faust WB (1987) Effects of kappa agonists and dexoxadrol on the acquisition of conditional discriminations in monkeys. J Pharmacol Exp Ther 243:737–744

    PubMed  CAS  Google Scholar 

  • Morley JE, Levine AS, Yim GK, Lowy MT (1983) Opioid modulation of appetite. Neurosci Biobehav Rev 7:281–305

    Article  PubMed  CAS  Google Scholar 

  • Mosberg HI, Hurst R, Hruby VJ, Gee K, Yamamura HI, Galligan JJ, Burks TF (1983) Bio-penicillamine enkephalins possess highly improved specificity toward δ opioid receptors. Proc Natl Acad Sci USA 80:5871–5874

    Article  PubMed  CAS  Google Scholar 

  • Mucha RJ, Herz A (1985) Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology 86:274

    Article  PubMed  CAS  Google Scholar 

  • Mulder AH, Frankhuyzen AL, Schoffelmeer ANM (1988) Modulation by opioid peptides of dopaminergic neurotransmission at the pre- and postsynaptic level. In: Illes P, Farsang C (eds) Regulatory roles of opioid peptides. VCH, Weinheim, pp 268–281

    Google Scholar 

  • Negus SS, Dykstra LA (1988) κ antagonist properties of buprenorphine in the shock titration procedure. Eur J Pharmacol 156:77–86

    Article  PubMed  CAS  Google Scholar 

  • Negus SS, Dykstra LA (1989) Neural substrates mediating the reinforcing properties of opioid analgesics. In: Watson RR (ed) Biochemistry and physiology of substance abuse, vol I. CRC Press, Boca Raton, pp 211–242

    Google Scholar 

  • Negus SS, Henriksen SJ, Mattox SR, Pasternak GW, Portoghese PS, Takemori AE, Weinger MB, Koob GF (1993) Effects of antagonists selective for mu, delta and kappa opioid receptors on the reinforcing effects of heroin in rats. J Pharmacol Exp Ther 265:1245–1252

    PubMed  CAS  Google Scholar 

  • Nestler EJ, Tallman JF (1988) Chronic morphine treatment increases cyclic AMP-dependent protein kinase activity in the rat locus coeruleus. Mol Pharmacol 33:127–132

    PubMed  CAS  Google Scholar 

  • Nestler EJ, Erdos JJ, Terwilliger R, Duman RS, Tallman JF (1989) Regulation of G proteins by chronic morphine in the rat locus coeruleus. Brain Res 476:230–239

    Article  PubMed  CAS  Google Scholar 

  • North RA (1986) Opioid receptor types and membrane ion channels. Trends Neurobiol Sci 114–117

    Google Scholar 

  • North RA, Williams JT, Surprenant A, Christie MJ (1987) m and d receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci USA 5487–5491

    Google Scholar 

  • Novick DM, Ochshorn M, Ghali V, Croxson TS, Mercer WD, Chiorazzi N, Kreek MJ (1989) Natural killer cell activity and lymphocyte subsets in parenteral heroin abusers and long-term methadone maintenance patients. J Pharmacol Exp Ther 250:606–610

    PubMed  CAS  Google Scholar 

  • O’Brien CP, Ehrman RN, Ternes JW (1986) Classical conditioning in human opioid dependence. In: Goldberg SR, Stolerman IP (eds) Behavioral analysis of drug dependence. Academic, New York, pp 329–356

    Google Scholar 

  • Oliveto AH, Picker MJ, Dykstra LA (1991) Acute and chronic morphine administration: effects of mixed-action opioids in rats and squirrel monkeys responding under a schedule of food presentation. J Pharmacol Exp Ther 257:8–18

    PubMed  CAS  Google Scholar 

  • Pasternak GW (1986) Multiple m opiate receptors: biochemical and pharmacological evidence for multiplicity. Biochem Pharmacol 35:361–364

    Article  PubMed  CAS  Google Scholar 

  • Pearl J, Aceto MD, Harris LS (1968) Prevention of writhing and other effects of narcotics and narcotic antagonists in mice. J Pharmacol Exp Ther 160:217–230

    PubMed  CAS  Google Scholar 

  • Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179:1011–1014

    Article  PubMed  CAS  Google Scholar 

  • Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84:167–173

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer A, Brantl V, Herz A, Emrich HM (1986) Psychotomimesis mediated by κ-opiate receptors. Science 233:774–776

    Article  PubMed  CAS  Google Scholar 

  • Picker MJ, Dykstra LA (1987) Comparison of the discriminative stimulus properties of U50 488 and morphine in pigeons. J Pharmacol Exp Ther 243:938–945

    PubMed  CAS  Google Scholar 

  • Picker MJ, Negus SS, Powell KR (1990) Differential cross-tolerance to mu and kappa opioid agonists in morphine-tolerant rats responding under a schedule of food presentation. Psychopharmacology 103:129–135

    Article  Google Scholar 

  • Picker MJ, Craft RM, Negus SS, Powell KR, Mattox SR, Jones SR, Hargrove BK, Dykstra LA (1992) Intermediate efficacy mu opioids: examination of their morphine-like stimulus effects and response rate-decreasing effects in morphine-tolerant rats. J Pharmacol Exp Ther 263:668–681

    PubMed  CAS  Google Scholar 

  • Porreca F, Mosberg HI, Hurst R, Hruby VJ, Burks TF (1984) Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. J Pharmacol Exp Ther 230:341–348

    PubMed  CAS  Google Scholar 

  • Porreca F, Heyman JS, Mosberg HI, Omnaas JR, Vaught JL (1987a) Role of mu and delta receptors in the supraspinal and spinal analgesic effects of [D-Pen2, D-Pen5] enkephalin in the mouse. J Pharmacol Exp Ther 241:393–400

    PubMed  CAS  Google Scholar 

  • Porreca F, Mosberg HI, Omnaas JR, Burks TF, Cowan A (1987b) Supraspinal and spinal potency of selective opioid agonists in the mouse writhing test. J Pharmacol Exp Ther 240:890–894

    PubMed  CAS  Google Scholar 

  • Porreca F, Takemori AE, Sultana M, Portoghese PS, Bowen WD, Mosberg HI (1992) Modulation of mu-mediated antinociception in the mouse involves opiod delta-2 receptors. J Pharmacol Exp Ther 263:147–152

    PubMed  CAS  Google Scholar 

  • Portoghese PS, Larson DL, Sayre LM, Fries DS, Takemori AE (1980) A novel opioid receptor site directed alkylating agent with irreversible narcotic antagonistic and reversible agonistic activities. J Med Chem 23:233–234

    Article  PubMed  CAS  Google Scholar 

  • Portoghese PS, Lipkowski AW, Takemori AE (1987) Binaltorphimine and norbinaltorphimine, potent and selective κ-opioid receptor antagonists. Life Sci 45:1287–1292

    Article  Google Scholar 

  • Preston KL, Bigelow GE, Bickel W, Liebson IA (1987) Three-choice drug discrimination in opioid-dependent humans: hydromorphone, naloxone and saline. J Pharmacol Exp Ther 243:1002–1009

    PubMed  CAS  Google Scholar 

  • Rasmussen K, Beitner-Johnson DB, Krystal JH, Aghajanian GK, Nestler EJ (1990) Opiate withdrawal and the rat locus coeruleus: behavioral, electrophysiological, and biochemical correlates. J Neurosci 10:2308–2317

    PubMed  CAS  Google Scholar 

  • Robson LE, Gillan MGC, Kosterlitz HW (1985) Species differences in the concentrations and distributions of opioid binding sites. Eur J Pharmacol 112:65–71

    Article  PubMed  CAS  Google Scholar 

  • Rotherman RB, Danks JA, Jacobson AE, Burke TR Jr, Rice KC (1985) Leucine enkephalin noncompetitively inhibits the binding of 3H-naloxone to the opiate mu-recognition site: Evidence for delta-mu binding site interactions in vitro. Neuropeptides 6:351–364

    Article  Google Scholar 

  • Sanger DJ, McCarthy PS (1981) Increased food and water intake produced in rats by opiate receptor agonists. Psychopharmacology 74:217–220

    Article  PubMed  CAS  Google Scholar 

  • Sannerud CA, Young AM (1986) Modification of morphine tolerance by behavioral variables. J Pharmacol Exp Ther 237:75–81

    PubMed  CAS  Google Scholar 

  • Schaefer GJ, Holtzman SG (1977) Discriminative effects of morphine in the squirrel monkey. J Pharmacol Exp Ther 201:67–75

    PubMed  CAS  Google Scholar 

  • Schild HO (1947) Drug antagonism. Br J Pharmacol Chemother 2:189–206

    CAS  Google Scholar 

  • Schmauss C, Yaksh TL (1984) In vivo studies on spinal opiate receptor systems mediating anti nociception. II. Pharmacological profiles suggesting a differential association of mu, delta and kappa receptors with visceral chemical and cutaneous thermal stimuli in the rat. J Pharmacol Exp Ther 228:1–12

    PubMed  CAS  Google Scholar 

  • Schulz R, Wüster M, Rubini P, Herz A (1981a) Differentiation of opiate receptors in the brain by the selective development of tolerance. Pharmacol Biochem Behav 14:75–79

    Article  PubMed  CAS  Google Scholar 

  • Schulz R, Wüster M, Rubini P, Herz A (1981b) Functional opiate receptors in the guinea-pig ileum: Their differentiation by means of selective tolerance development. J Pharmacol Exp Ther 219:547–550

    PubMed  CAS  Google Scholar 

  • Schuster CR (1986) Implications of laboratory research for the treatment of drug dependence. In: Goldberg SR, Stolerman IP (eds) Behavioral analysis of drug dependence. Academic, New York, pp 357–385

    Google Scholar 

  • Schuster CR, Fischman MW, Johanson CE (1981) Internal stimulus control and subjective effects of drugs. In: Thompson T, Johanson CE (eds) Behavioral pharmacology of human drug dependence. NIDA Monogr 37:116–129

    Google Scholar 

  • Shannon HE, Holtzman SG (1976) Evaluation of the discriminative effects of morphine in the rat. J Pharmacol Exp Ther 198:54–65

    PubMed  CAS  Google Scholar 

  • Shavit Y, DePaulis A, Martin FC, Terman GW, Pechnick RN, Zane CJ, Gale RP, Liebeskind JC (1986) Involvement of brain opiate receptors in the immune-suppressive effect of morphine. Proc Natl Acad Sci USA 83:7114–7117

    Article  PubMed  CAS  Google Scholar 

  • Shavit Y, Martin FC, Yirmiya R, Ben-Eliyahu S, Terman GW, Weiner H, Gale RP, Liebeskind JC (1987) Effects of a single adminsitration of morphine or footshcock stress on natural killer cell cytotoxicity. Brain Behav Immun 1:318–328

    Article  PubMed  CAS  Google Scholar 

  • Sheldon RJ, Nuan L, Porreca F (1987) Mu antagonist properties of kappa agonists in a model of rat urinary bladder motility in vivo. J Pharmacol Exp Ther 243:234–240

    PubMed  CAS  Google Scholar 

  • Shippenberg TS, Bals-Kubik R, Herz A (1987) Motivational properties of opioids; evidence that an activation of δ-receptors mediates reinforcement processes. Brain Res 436:234–239

    Article  PubMed  CAS  Google Scholar 

  • Sibinga NES, Goldstein A (1988) Opioid peptides and opioid receptors in cells of the immune system. Annu Rev Immunol 6:219–249

    Article  PubMed  CAS  Google Scholar 

  • Siegel S (1976) Morphine analgesic tolerance: its situation specificity supports a pavlovian conditioning model. Science 193:323–325

    Article  PubMed  CAS  Google Scholar 

  • Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic [3H]2-etorphine to rat-brain homogenate. Proc Natl Acad Sci USA 70:1947–1949

    Article  PubMed  CAS  Google Scholar 

  • Smith JR, Simon EJ (1980) Selective protection of stereospecific enkephalin and opiate binding against inactivation by N-ethyklmaleimide: evidence for two classes of opiate receptors. Proc Natl Acad Sci USA 77:281–284

    Article  PubMed  CAS  Google Scholar 

  • Sofuoglu M, Portoghese PS, Takemori AE (1991) Differential antagonism of delta opioid agonsits by naltrindole and its benzofuran analog (NTB) in mice; Evidence for delta opioid receptor subtypes. J Pharmacol Exp Ther 257:676–680

    PubMed  CAS  Google Scholar 

  • Spyraki C, Fibiger HC, Phillips AG (1983) Attenuation of heroin reward in rats by disruption of the mesolimbic dopamine system. Psychopharmacology 79:278–283

    Article  PubMed  CAS  Google Scholar 

  • Stolerman I (1992) Drugs of abuse: behavioural principles, methods and terms, Trends Pharmacol Sci 13:170–176

    Article  PubMed  CAS  Google Scholar 

  • Su TP (1985) Further demonstration of kappa opioid binding sites in the brain: evidence for heterogeneity. J Pharmacol Exp Ther 232:144–148

    PubMed  CAS  Google Scholar 

  • Suarez-Roca H, Maixner W (1992) Morphine produces a multiphasic effect on the release of substance P frim rat trigeminal nucleus slices by activating different opioid receptor subtypes. Brain Res 579:195–203

    Article  PubMed  CAS  Google Scholar 

  • Sweeney MI, White TD, Sawynok J (1987) Involvement of adenosine in the spinal antinociceptive effects of morphine and noradrenaline. J Pharmacol Exp Ther 243:657–665

    PubMed  CAS  Google Scholar 

  • Sweeney MI, White TD, Sawynok J (1991) Intracerebroventricular morphine releases adenosine and adenosine 3′, 5′-cyclic monophosphate from the spinal cord via a serotonergic mechanism. J Pharmacol Exp Ther 259:1013–1018

    PubMed  CAS  Google Scholar 

  • Takemori AE, Kupferberg HJ, Miller JW (1969) Quantitative studies of the antagonism of morphine by morphine and naloxone. J Pharmacol Exp Ther 169:39–45

    PubMed  CAS  Google Scholar 

  • Takemori AE, Portoghese PS (1987) Evidence for the interaction of morphine with kappa and delta opioid receptors to induce analgesia in β-funaltrexamine-treated mice. J Pharmacol Exp Ther 243:91–94

    PubMed  CAS  Google Scholar 

  • Takemori AE, Ho BY, Naeseth JS, Portoghese PS (1988) Nor-binaltorphimine, a highly selective kappa-opioid antagonist in analgesic and receptor binding assays. J Pharmacol Exp Ther 246:255–258

    PubMed  CAS  Google Scholar 

  • Terenius L (1973) Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol Toxicol 32:317–320

    Article  CAS  Google Scholar 

  • Thompson T, Schuster CR (1964) Morphine self-administration, food-reinforced, and avoidance behaviors in rhesus monkeys. Psychopharmacologia 5:87–94

    Article  PubMed  CAS  Google Scholar 

  • Tiffany ST, Maude-Griffin PM (1988) Tolerance to morphine in the rat: associative and nonassociative effects. Behav Neurosci 102:534–543

    Article  PubMed  CAS  Google Scholar 

  • Tubaro E, Borelli G, Croce C, Cavallo G, Santiangeli C (1983) Effect of morphine on resistance to infection. J Infect Dis 148:656–666

    Article  PubMed  CAS  Google Scholar 

  • Tyers MB (1980) A classification of opiate receptors that mediate antinociception in animals. Br J Pharmacol 69:503–512

    PubMed  CAS  Google Scholar 

  • Ukai M, Holtzman SG (1988) Effects of β-funaltrexamine on ingestive behaviors in the rat. Eur J Pharmacol 153:161–165

    Article  PubMed  CAS  Google Scholar 

  • Vaccarino FJ, Pettit HO, Bloom FE, Koob GF (1985) Effects of intracerebroventricular administration of methyl naloxonium, chloride on heroin self-administration in the rat. Pharmacol Biochem Behav 23:495–498

    Article  PubMed  CAS  Google Scholar 

  • Valentino RJ, Wehby RG (1989) Locus ceruleus discharge characteristics of morphine-dependent rats: effects of naltrexone. Brain Res 488:126–134

    Article  PubMed  CAS  Google Scholar 

  • Van Der Kooy D, Mucha RF, O’Shaughnessy M, Bucenlieks P (1982) Reinforcing effects of brain microinjections of morphine revealed by conditioned place preference. Brain Res 243:107

    Article  PubMed  Google Scholar 

  • Vaught JL, Takemori AE (1979) Differential effects of leucine and methionine enkephalin on morphine-induced analgesia, acute tolerance and dependence. J Pharmacol Exp Ther 208:86–90

    PubMed  CAS  Google Scholar 

  • Von Voightlander PF, Lahti RA, Ludens JH (1983) U-50,488: a selective and structurally novel non-mu (kappa) opioid agonist. J Pharmacol Exp Ther 224:7–12

    Google Scholar 

  • Wang JB, Imai Y, Eppler CM, Gregor P, Spivak CE, Uhl GR (1993) μ opiate receptor: cDNA cloning and expression. Proc Natl Acad Sci USA 90:10230–10234

    Google Scholar 

  • Ward SJ, Takemori AE (1983) Relative involvement of mu, kappa and delta receptor mechanisms in opiate-mediated antinociception in mice. J Pharmacol Exp Ther 224:525–530

    PubMed  CAS  Google Scholar 

  • Ward SJ, Portoghese PS, Takemori AE (1982) Pharmacological characterization in vivo of the novel opiate, β-funaltrexamine. J Pharmacol Exp Ther 220:494–498

    PubMed  CAS  Google Scholar 

  • Wasacz J (1981) Natural and synthetic narcotic drugs. Am Sci 69:318–324

    PubMed  CAS  Google Scholar 

  • Weber RJ, Pert A (1989) The periaqueductal gray matter mediates opiate-induced immunosuppression. Science 245:188–190

    Article  PubMed  CAS  Google Scholar 

  • Wei E, Loh HH, Way EL (1973) Quantitative aspects of precipitated abstinence in morphine-dependent rats. J Pharmacol exp Ther 184:398–403

    PubMed  CAS  Google Scholar 

  • Werz MA, MacDonald RL (1983) Opioid peptides with differential affinity for mu and delta receptors decrease sensory neuron calcium-dependent action potentials. J Pharmacol Exp Ther 227:394–402

    PubMed  CAS  Google Scholar 

  • Werz MA, MacDonald RL (1985) Dynorphin and neoendorphin peptides decrease dorsal root ganglion neuron calcium-dependent action potential duration. J Pharmacol Exp Ther 234:49–56

    PubMed  CAS  Google Scholar 

  • Werz MA, Grega DS, Macdonald RL (1987) Actions of mu, delta and kappa opioid agonists and antagonists on mouse primary afferent neurons in culture. J Pharmacol Exp Ther 243:258–263

    PubMed  CAS  Google Scholar 

  • Wigdor S, Wilcox GL (1987) Central and systemic morphine-induced antinociception in mice: contribution of descending serotonergic and noradrenergic pathways. J Pharmacol Exp Ther 242:90–95

    PubMed  CAS  Google Scholar 

  • Winger G, Skjoldager P, Woods JH (1992) Effects of buprenorphine and other opioid agonists and antagonists on alfentanil- and cocaine-reinforced responding in rhesus monkeys. J Pharmacol Exp Ther 261:311–317

    PubMed  CAS  Google Scholar 

  • Wolozin BL, Pasternak GW (1981) Classification of multiple morphine and enkephalin binding sites in the central nervous system. Proc Natl Acad Sci USA 78:6181–6185

    Article  PubMed  CAS  Google Scholar 

  • Woods JH, Gmerek DE (1985) Substitution and primary dependence studies in animals. Drug Alcohol Depend 14:233–247

    Article  PubMed  CAS  Google Scholar 

  • Woods JH, Winger G (1987) Opioids, receptors and abuse liability. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 1555–1564

    Google Scholar 

  • Woods JH, Young am, Herling S (1982) Classification of narcotics on the basis of their reinforcing, discriminative, and antagonist effects in rhesus monkeys. Fed Proc 41:221–227

    PubMed  CAS  Google Scholar 

  • Wybran J, Appelboom T, Famaey JP, Govaerts A (1979) Suggestive evidence for receptors for morphine and methionine-enkephalin on normal human blood T-lymphocytes. J Immunol 123:1068–1070

    PubMed  CAS  Google Scholar 

  • Yaksh TA (1979) Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray. Brain Res 160:180–185

    Article  PubMed  CAS  Google Scholar 

  • Yaksh TA (1985) Pharmacology of spinal adrenergic systems which modulate spinal nociceptive processing. Pharmacol Biochem Behav 22:845–858

    Article  PubMed  CAS  Google Scholar 

  • Yaksh TA, Rudy TA (1977) Studies on the direct spinal action of narcotics in the production of analgesia in the rat. J Pharmacol Exp Ther 202:411–428

    PubMed  CAS  Google Scholar 

  • Yaksh TA, Rudy TA (1978) Narcotic analgetics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain 4:299–359

    Article  PubMed  CAS  Google Scholar 

  • Yaksh TA, Noueihed R (1985) The physiology and pharmacology of spinal opiates. Annu Rev Pharmacol Toxicol 25:433–462

    Article  PubMed  CAS  Google Scholar 

  • Yasuda K, Raynor K, Kong H, Breder CD, Takeda J, Reisine T, Bell GI (1993) Cloning and functional comparison of κ and δ opioid receptors from mouse brain. Proc Natl Acad Sci USA 90:6736–6740

    Article  PubMed  CAS  Google Scholar 

  • Young AM, Swain HH, Woods JH (1981) Comparison of opioid agonists in maintaining responding and in suppressing morphine withdrawal in rhesus monkeys. Psychopharmacology 74:329–335

    Article  PubMed  CAS  Google Scholar 

  • Young AM, Stephens KR, Hein DW, Woods JH (1984) Reinforcing and discriminative stimulus properties of mixed agonist-antagonist opioids. J Pharmacol Exp Ther 229:118–126

    PubMed  CAS  Google Scholar 

  • Young AM, Kapitsopoulos G, Makhay MM (1991) Tolerance to morphine-like stimulus effects of mu opioid agonists.J Pharmacol Exp Ther 257:795–805

    PubMed  CAS  Google Scholar 

  • Young AM, Masaki MA, Geula C (1992) Discriminative stimulus effects of morphine: effects of training dose on agonist and antagonsit effects of mu opioids. J Pharmacol Exp Ther 261:246–257

    PubMed  CAS  Google Scholar 

  • Zimmerman DM, Leander JD (1990) Selective opioid receptor agonists and antagonists: research tools and potential therapeutic agents. J Med Chem 33:895–902

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman DM, Leander JD, Reel JK, Hynes MD (1987) Use of β-funaltrexamine to determine mu opioid receptor involvement in the analgesic activity of various opioid ligands. J Pharmacol Exp Ther 241:374–378

    PubMed  CAS  Google Scholar 

  • Zukin RS, Eghbali M, Olive D, Unterwald EM, Tempel A (1988) Characterization and visualization of rat and guinea pig brain κ opioid receptors: evidence for κ 1and κ 2opioid receptors: evidence for κ1 and κ2 opioid receptors. Proc Natl Acad Sci USA 85:4061–4065

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dykstra, L. (1996). Opioid Analgesics. In: Schuster, C.R., Kuhar, M.J. (eds) Pharmacological Aspects of Drug Dependence. Handbook of Experimental Pharmacology, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60963-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60963-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64631-7

  • Online ISBN: 978-3-642-60963-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics