Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 118))

Abstract

Cocaine is the principal alkaloid of Erythoxylon coca, a shrub that grows in the Andean Highlands and the northwestern portions of the Amazon River in South America. The coca plant has been cultivated by the Indians in these areas for several thousand years, and the dried leaves are still used today. Those living in the Highland areas mix the leaves with lime or ash and chew or suck this combination. Addition of the alkaline ash promotes release of the cocaine by changing the pH of saliva. Amazonian Indians first pulverize the alkaline and coca leaf combination. They place this combination into their mouths, where it is mixed with saliva and then swallowed. Coca ingested in these ways has been used for religious, medicinal, and energizing purposes for centuries (see JOHANSON arid FISCHMAN 1989 for a more complete discussion of this history). Since significant cocaine plasma levels can be attained when coca leaves are chewed and sucked as described (PALY et al. 1980), the effects achieved by coca chewing are undoubtedly due to the actions of this principal constituent.

This chapter was prepared during the same period of time that another chapter on the same topic was being prepared by CEJ. That chapter will appear in Psychopharmacology: The Fourth Generation of Progress (edited by F.E. Bloom and D.J. Kupfer) and was co-authored by Charles R. Schuster. Portions of the chapters overlap and all authors have agreed to this arrangement. In addition, the editors of both book have been informed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman JM, White FJ (1990) A10 somatodendritic dopamine autoreceptor sensitivity following withdrawal from repeated cocaine treatment. Neurosci Lett 117:181–187

    Article  PubMed  CAS  Google Scholar 

  • Akimoto K, Hamamura T, Otsuki S (1989) Subchronic cocaine treatment enhances cocaine-induced dopamine efflux, studied by in vivo intracerebral dialysis. Brain Res 490:339 #x2013;344

    Article  PubMed  CAS  Google Scholar 

  • Alessandri SM, Sullivan MW, Imaizumi S, Lewis M (1993) Learning and emotional responsibity in cocaine-exposed infants. Dev Psychol 29:989–997

    Article  Google Scholar 

  • Anday EK, Cohen ME, Kelley NE, Leitner DS (1989) Effect of in utero cocaine exposure on startle and its modification. Dev Pharmacol Ther 12:137–14

    PubMed  CAS  Google Scholar 

  • Arndt IO, Dorozynsky L, Woody GE, McLellan AT, O’Brien CP (1992) Desipramine treatment of cocaine dependence in methadone-maintained patients. Arch Gen Psychiatry 49:888–893

    PubMed  CAS  Google Scholar 

  • Arndt IO, McLellan AT, Dorozynsky L, Woody GE, O’Brien CP (1994) Desipramine treatment of cocaine dependence: role of antisocial personality disorder. J New Ment Dis 182:151–156.

    Article  CAS  Google Scholar 

  • Barash PG (1977) Cocaine in clinical medicine. In: Petersen RC, Stillman RC (eds) Cocaine, 1977. US Government Printing Office, Washington DC, pp 193–200

    Google Scholar 

  • Barth CW, Bray M, Roberts WC (1986) Rupture of the ascending aorta during cocaine intoxication. Am J Cardiol 57:496

    Article  PubMed  Google Scholar 

  • Behnke M, Eyler FD (1993) The consequences of prenatal substance use for the developing fetus, newborn, and young child. In J Addict 28:1341–1391

    Google Scholar 

  • Beitner-Johnson D, Nestler EJ (1991) Morphine and cocaine exert common chronic actions on tyrosine hydroxylase in dopaminergic brain reward regions. J Neurochem 57:344–347

    Article  PubMed  CAS  Google Scholar 

  • Beitner-Johnson D, Guitart X, Nestler EJ (1992a) Common intracellular actions of chronic morphine and cocaine in dopaminergic brain reward regions. In: Kalivas PW, Samson HH (eds) The neurobiology of drug and alcohol addiction. New York Academy of Sciences, New York, pp 70–87

    Google Scholar 

  • Beitner-Johnson D, Guitart X, Nestler EJ (1992b) Neurofilament proteins and the mesolimbic dopamine system: common regulation by chronic morphine and chronic cocaine in the rat ventral tegmental area. J Neurosci 12:2165–2176

    PubMed  CAS  Google Scholar 

  • Benowitz NL (1992) How toxic is cocaine? In: Edwards G (ed) Cocaine: scientific and social dimensions. Ciba Foundation Symposium. Wiley, Chichester, pp 125–148

    Google Scholar 

  • Bergman J, Madras B, Johnson S, Spealman R (1989) Effects of cocaine and related drugs in nonhuman primates. J Pharmacol Exp Ther 251:150–155

    PubMed  CAS  Google Scholar 

  • Bergman J, Kamien J, Spealman R (1990) Antagonism of cocaine self-administration by selective dopamine D1 and D2 antagonists. Behav Pharmacol 1:355–363

    PubMed  Google Scholar 

  • Boja JW, Mitchell WM, Patel A, TA. K, Carroll FI, Lewin AH, Abraham P, Kuhar MJ (1992) High-affinity binding of [125I]RTI-55 to dopamine and serotonin transporters in rat brain. Synapse 12:27–36

    Article  PubMed  CAS  Google Scholar 

  • Boyer CS, Petersen DR (1990) Potentiation of cocaine-mediated hepatotoxicity by acute and chronic ethanol. Alcoholism 14:28–31

    PubMed  CAS  Google Scholar 

  • Bradberry C, Roth R (1989) Cocaine increases extracellular dopamine in rat nucleus accumbens and ventral tegmental area as shown by in vivo dialysis. Neurosci Lett 103:97–102

    Article  PubMed  CAS  Google Scholar 

  • Bradberry CW, Nobiletti JB, Elsworth JD, Murphy B, Jatlow P, Roth RH (1993) Cocaine and cocaethylene: microdialysis comparison of brain drug levels and effects on dopamine and serotonin. J Neurochem 60:1429–1435

    Article  PubMed  CAS  Google Scholar 

  • Brock JW, Ng JP, Justice JB (1990) Effect of chronic cocaine on dopamine synthesis in the nucleus accumbens as determined by microdialysis perfusion with NSD-1015. Neurosci Lett 117:234–239

    Article  PubMed  CAS  Google Scholar 

  • Brodie MS, Dunwiddie TV (1990) Cocaine effects in the ventral tegmental area: evidence for an indirect dopaminergic mechanism of action. Naunyn Schmiedebergs Arch Pharmacol 342:660–665

    Article  PubMed  CAS  Google Scholar 

  • Brogan WC, Lange RA, Kim AS, Moliterno DJ, Hillis LD (1991) Alleviation of cocaine-induced coronary vasoconstriction by nitroglycerin. J Am Coll Cardiol 18:581–586

    Article  PubMed  Google Scholar 

  • Brogan WC, Lange RA, Glamann B, Hillis LD (1992) Recurrent coronary vasoconstriction caused by intranasal cocaine: possible role for medicine. Ann Intern Med 116:556–561

    PubMed  CAS  Google Scholar 

  • Brust JC, Richter RW (1977) Stroke associated with cocaine abuse? NY State J Med 77:1473–1475

    CAS  Google Scholar 

  • Budney AJ, Higgins ST, Hughes JR, Bickel WK (1992) The scientific/clinical response to the cocaine epidemic — a MEDLINE search of the literature. Drug Alcohol Depend 30:143–149

    Article  PubMed  CAS  Google Scholar 

  • Caine SG, Koob GF (1993) Modulation of cocaine self-administration in the rat through D-3 dopamine receptors. Science 260:1814–1816

    Article  PubMed  CAS  Google Scholar 

  • Calligaro DO, Eldefrawi ME (1988) High affinity stereospecific binding of [1H] cocaine in striatum and its relationship to the dopamine transporter. Membr Biochem 7:87–106

    Article  CAS  Google Scholar 

  • Carboni E, Imperato A, Perezzani L, Di Chiara G (1989) Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience 28:653–661

    Article  PubMed  CAS  Google Scholar 

  • Carroll ME, Lac ST (1992) Effects of buprenorphine on self-administration of cocaine and a nondrug reinforcer in rats. Psychopharmacology 106:439–446

    Article  PubMed  CAS  Google Scholar 

  • Carroll ME, Lac ST, Acensio M, Kragh R (1990) Fluoxetine reduces intravenous cocaine self-administration in rats. Pharmacol Biochem Behav 35:237–244

    Article  PubMed  CAS  Google Scholar 

  • Carroll FI, Lewin AH, Boja JW, Kuhar MJ (1992) Cocaine receptor: biochemical characterization and structure-activity relationships of cocaine analogues at the dopamine transporter. J Med Chem 35:969–981

    Article  PubMed  CAS  Google Scholar 

  • Chasnoff IJ, Burns WJ, Schnoll SH, Burns KA (1985) Cocaine use in pregnancy. N Engl J Med 313:666–669

    Article  PubMed  CAS  Google Scholar 

  • Chow JM, Menchen SL, Paul BD, Stein RJ (1990) Vascular changes in the nasal submucosa of chronic cocaine addicts. Am J Forensic Med Pathol 11:136–143

    Article  PubMed  CAS  Google Scholar 

  • Cline EJ, Scheffel U, Boja JW, Mitchell WM, Carroll FI, Abraham P, Lewin AH, Kuhar MJ (1992) In vivo binding of [125I]RTI-55 to dopamine transporters: pharmacology and regional distribution with autoradiography. Synapse 12:37–46

    Article  PubMed  CAS  Google Scholar 

  • Coles CD, Platzman KA (1993) Behavioral development in children prenatally exposed to drugs and alcohol. Int J Addict 28:1393–1433

    PubMed  CAS  Google Scholar 

  • Cone EJ, Weddington WW Jr (1989) Prolonged occurrence of cocaine in human saliva and urine after chronic use. J Anal Toxicol 13:65–68

    PubMed  CAS  Google Scholar 

  • Cone EJ, Yousefnejad D, Darwin WD, Maguire T (1991) Testing human hair for drugs of abuse. II. Identification of unique cocaine metabolites in hair of drug abusers and evaluation of decontamination procedures. J Anal Toxico 115:250–255

    Google Scholar 

  • Cregler LL, Mark H (1986) Medical complications of cocaine abuse. N Engl J Med 315:1495–1500

    Article  PubMed  CAS  Google Scholar 

  • Cunningham KA, Callahan PM (1991) Monoamine reuptake inhibitors enhance the discriminative state induced by cocaine in the rat. Psychopharmacology 104:177–180

    Article  PubMed  CAS  Google Scholar 

  • Cunningham KA, Lakoski JM (1988) Electrophysiological effects of cocaine and procaine on dorsal raphe serotonin neurons. Eur J Pharmacol 148:457–462

    Article  PubMed  CAS  Google Scholar 

  • Cunningham KA, Lakoski JM (1990) The interaction of cocaine with serotonin dorsal raphe neurons: single unit extracellular recording studies. Neuropsychopharmacology 3:41–50

    PubMed  CAS  Google Scholar 

  • Cunningham KA, Paris JM, Goeders NE (1992a) Chronic cocaine enhances serotonin autoregulation and serotonin uptake binding. Synapse 11:112–123

    Article  PubMed  CAS  Google Scholar 

  • Cunningham KA, Paris JM, Goeders NE (1992b) Serotonin neurotransmission in cocaine sensitization. In: Kalivas PW, Samson HH (eds) The neurobiology of drug and alcohol addiction. New York Academy of Sciences, New York, pp 117–127

    Google Scholar 

  • Dackis CA, Gold MS (1985a) Bromocriptine as a treatment for cocaine abuse: the dopamine depletion hypothesis. Int J Psychiatry Med 15:125–135

    Article  PubMed  Google Scholar 

  • Dackis CA, Gold MS (1985b) Pharmacological approaches to cocaine addiction. J Subst Abuse Treat 2:139–145

    Article  PubMed  CAS  Google Scholar 

  • Dackis CA, Gold MS, Sweeney DR, Byron JPJ, Climko R (1987) Single-dose bromocriptine reverses cocaine craving. Psychiatry Res 20:261–264

    Article  PubMed  CAS  Google Scholar 

  • de Wit H, Wise RA (1976) Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine or phenoxybenzamine. Can J Psychol 31:195–203

    Article  Google Scholar 

  • Di Chiara G (1993) Searching for the hidden order in chaos. Commentary on Kalivas et al.: the pharmacology and neural circuitry of sensitization to psychostimulants. Behav Pharmacol 4:335–337

    Article  PubMed  Google Scholar 

  • Esposito RU, Motola, Kornetsky (1978) Cocaine: acute effects on reinforcement thresholds for self-stimulation behavior to the medial forebrain bundle. Pharmacol Biochem Behav 8:437–439

    Article  PubMed  CAS  Google Scholar 

  • Evans SM Cone EJ, Marco AP, Henningfield JE 1993 A comparison of the arterial kinetics of smoked and intravenous cocaine. In: Harris L (ed) Problems of Drug Dependence, 1992. US Department of Health and Human Services Rockville MD

    Google Scholar 

  • Evans SM, Cone EJ, Henningfield JE 1994 Rapid arterial kinetics of intravenous and smoked cocaine: relationship to subjective and cardiovascular effects. Presented at the annual meeting of the College on Problems of Drug Dependence 56th annual scientific meeting, Palm Beach, Florida

    Google Scholar 

  • Farfel GM, Kleven MS, Woolverton WL, Seiden LS, Perry BD (1992) Effects of repeated injections of cocaine on catecholamine receptor binding sites, dopamine transporter binding sites and behavior in rhesus monkey. Brain Res 578:235–243

    Article  PubMed  CAS  Google Scholar 

  • Farre M, Llorente M, Ugena B, Lamax X, Cami J (1990) Interaction with ethanol. In. Harris L (ed) Problems of drug dependence 1990. Proceedings of the 52nd annual scientific meeting. The Committee on Problems of Drug Dependence. National Institute on Drug Abuse, Rockville

    Google Scholar 

  • Fischman MW, Folt in RW (1988) The effects of desipramine maintenance on cocaine self-administration in humans. Psychopharmacology 96:S20

    Google Scholar 

  • Fischman MW, Foltin RW (1992) Self-administration of cocaine by humans: a laboratory perspective. In: Bock G, Whelan J (eds) Cocaine: scientific social dimensions. Ciba Foundation Symposium. Wiley, Chichester, pp 165–180

    Google Scholar 

  • Fischman MW, Schuster CR, Javaid J, Hatano Y, Davis J (1985) Acute tolerance development to the cardiovascular and subjective effects of cocaine. J Pharmacol Exp Ther 235:677–682

    PubMed  CAS  Google Scholar 

  • Fischman MW, Foltin RW, Nestadt G, Pearlson GD (1990) Effects of desipramine maintenance on cocaine self- administration by humans. J Pharmacol Exp Ther 253:760–770

    PubMed  CAS  Google Scholar 

  • Fishbain DA, Wetli CV (1981) Cocaine intoxication, delirium and death in a body packer. Ann Emerg Med 10:531–532

    Article  PubMed  CAS  Google Scholar 

  • Fishburne P, Abelson H, Cisin I (1980) The National Survey on Drug Abuse: main findings, 1979. Superintendent of Documents, US Government Printing Office, Washington DC

    Google Scholar 

  • Flores ED, Lange RA, Cigarroa RG, Hillis LD (1990) Effect of cocaine on coronary artery dimensiones in atheroschlerotic coronary artery disease: enhanced vasoconstriction at sites of significant stenoses. J Am Coll Cardiol 16:74–79

    Article  PubMed  CAS  Google Scholar 

  • Foltin RW, Fischman MW (1989) Ethanol and cocaine interactions in humans: cardiovasular consequences. Pharmacol Biochem Behav 31:877–883

    Article  Google Scholar 

  • Foltin RW, Fischman MW (1991) Smoked and intravenous cocaine in humans: acute tolerance, cardiovascular and subjective effects. J Pharmacol Exp Ther 257:247–261

    PubMed  CAS  Google Scholar 

  • Foltin RW, Fischman MW (1992) The cardiovascular and subjective effects of intravenous cocaine and morphine combinations in humans. J Pharmacol Exp Ther 261:623–632

    PubMed  CAS  Google Scholar 

  • Foltin RW, Fischman MW (1994) Effects of buprenorphine on the self- administration of cocaine by humans. Behav Pharm 5:79–89

    CAS  Google Scholar 

  • Frankenfield DL, Lange WR, Weinhold LL, Contoreggi CS, Gorelick DA (1994) Risk factors for adverse cardiovascular events in cocaine-dependent research subjects. College on Problems of Drug Dependence, Proceedings of the 56th annual scientific meeting

    Google Scholar 

  • Galloway MP (1990) Regulation of dopamine and serotonin synthesis by acute administration of cocaine. Synapse 6:63–72

    Article  PubMed  CAS  Google Scholar 

  • Gawin F, Allen D, Hurnblestone B (1989) Outpatient treatment of “crack” cocaine smoking with flupenthixol decanoate. Arch Gen Psychiatry 46:322–325

    PubMed  CAS  Google Scholar 

  • Gawin FH, Ellinwood EH (1988) Cocaine and other stimulants: actions, abuse and treatment. N Engl J Med 318:1173–1182

    Article  PubMed  CAS  Google Scholar 

  • Gawin FH, Kleber HD (1986) Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Clinical observations. Arch Gen Psychiatry 43:107–113

    PubMed  CAS  Google Scholar 

  • Gawin FH, Kleber HD, Byck R, Rounsaville BJ, Kosten TR, Jatlow PI, Morgan C (1989) Desipramine facilitation of initial cocaine abstinence. Arch Gen Psychiatry 46:117–121

    PubMed  CAS  Google Scholar 

  • Giannini AJ, Billett W (1987) Bromocriptine-desipramine protocol in treatment of cocaine addiction. J Clin Pharmacol 27:549–554

    PubMed  CAS  Google Scholar 

  • Giannini AJ, Baumgartel P, DiMarzio LR (1987) Bromocriptine therapy in cocaine withdrawal. J Clin Pharmacol 27:267–270

    PubMed  CAS  Google Scholar 

  • Goeders NE, Kuhar MJ (1987) Chronic cocaine administration induces opposite changes in dopamine receptors in the striatum and nucleus accumbens. Alcohol Drug Res 7:207–216

    PubMed  CAS  Google Scholar 

  • Goeders NE, Smith JE (1983) Cortical dopaminergic involvement in cocaine reinforcement. Science 221:773–775

    Article  PubMed  CAS  Google Scholar 

  • Goeders NE, Smith JE (1986) Reinforcing properties of cocaine in the medial prefrontal cortex: primary action on presynaptic dopaminergic terminals. Pharmacol Biochem Behav 25:191–199

    Article  PubMed  CAS  Google Scholar 

  • Goeders NE, Smith JE (1993) Intracranial cocaine self-administration into the medial prefrontal cortex increases dopamine turnover in the nucleus accumbens. J Pharmacol Exp Ther 265:592–600

    PubMed  CAS  Google Scholar 

  • Grant BF, Harford TC (1990) Concurrent and simultaneous use of alcohol with cocaine-results of a national survey. Drug Alcohol Depend 25:97–104

    Article  PubMed  CAS  Google Scholar 

  • Grilli M, Wright AG, Hanbauer I (1991) Characterization of [3H]dopamine uptake sites and [3H]cocaine recognition sites in primary cultures of mesencephalic neurons during in vitro development. J Neurochem 56:2108–2115

    Article  PubMed  CAS  Google Scholar 

  • Hearn WL, Rose S, Wagner J, Ciarleglios A, Mash DC (1991) Cocaethylene is more potent that cocaine in mediating lethality. Pharmaco Biochem Behav 3:531–533

    Article  Google Scholar 

  • Henry DJ, White FJ (1991) Repeated cocaine administration causes persistent enhancement of D1 dopamine receptor sensitivity within the rat nucleus accumbens. J Pharmacol Exp Ther 258:882–890

    PubMed  CAS  Google Scholar 

  • Henry DJ, White FJ (1992) Electrophysiological correlates of psychomotor stimulant-induced sensitization. In: Kalivas PW, Samson HH (eds) The neurobiology of drug and alcohol addiction. New York Academy of Sciences, New York

    Google Scholar 

  • Henry DJ, Greene MA, White FJ (1989) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: repeated administration. J Pharmacol Exp Ther 251:833–839

    PubMed  CAS  Google Scholar 

  • Herman EH, Vick J (1987) A study of direct effect of cocaine on the heart. Fed Proc 46:1146

    Google Scholar 

  • Heyser CJ, Miller JS, Spear NE, Spear LP (1992) Prenatal exposure to cocaine disrupts cocaine-induced conditioned place preference in rats. Neurotoxicol Teratol 14:57–64

    Article  PubMed  CAS  Google Scholar 

  • Higgins ST, Bickel WK, Hughes JR, Lynn M, Capeless MA (1990) Behavioral and cardiovascular effects of cocaine and alcohol combinations in humans. In: Harris L (eds) Problems of drug dependence 1990. Proceedings of the 52nd annual scientific meeting. The Committee on Problems of Drug Dependence, National Institute on Drug Abuse, Rockville MD

    Google Scholar 

  • Hime GW, Hearn WL, Rose S, Cofino J (1991) Analysis of cocaine and cocaethylene in blood and tissues by GD-NPD and GC-ion trap mass spectrometry. J Anal Toxicol 15:241–245

    PubMed  CAS  Google Scholar 

  • Hollander JE, Hoffman RS (1991) Cocaine-induced myocardial infarction: an analysis and review of the literature. J Emerg Med 10:169–177

    Article  Google Scholar 

  • Hooks MS, Jones GH, Smith AD, Neill DB, Justice JB (1992) Response to novelty predicts the locomotor and nucleus accumbens response to cocaine. Synapse 9:121–128

    Article  Google Scholar 

  • Hubner CB, Koob GF (1987) Ventral pallidal lesions produce decreases in cocaine and heroin self-administration in the rat. Neurosci Abstr 13:1717

    Google Scholar 

  • Hubner CB, Moreton JE (1991) Effects of selective D1 and D2 dopamine antagonists on cocaine self-administration in the rat. Psychopharmacology 105:151–156

    Article  PubMed  CAS  Google Scholar 

  • Hurd Y, Kehr J, Ungerstedt U (1988) In vivo microdialysis as a technique to monitor drug transport: correlation of extracellular cocaine levels and dopamine overflow in the rat brain. J Neurochem 51: 1314 – 1316

    Article  PubMed  CAS  Google Scholar 

  • Hurd YL, Ungerstedt U (1989) Cocaine: an in vivo microdialysis evaluation of its acute action on dopamine transmission in rat striatum. Synapse 3:48–54

    Article  PubMed  CAS  Google Scholar 

  • Hurd YL, Weiss F, Anden N-E, Koob GF, Ungerstedt U (1989) Cocaine reinforcement and extracellular dopamine overflow in rat nucleus accumbens: an in vivo microdialysis study. Brain Res 498:199–203

    Article  PubMed  CAS  Google Scholar 

  • Hurd YL, Weiss F, Koob G, Ungerstedt U (1990) The influence of cocaine self-administration on in vivo dopamine and acetylcholine neurotransmission in rat caudate-putamen. Neurosci Lett 109:227–233

    Article  PubMed  CAS  Google Scholar 

  • Hutchings DE (1993) The puzzle of cocaine’s effects following maternal use during pregnancy: are there reconcilable differences? Neurotoxicol Teratol 15:281–286

    Article  PubMed  CAS  Google Scholar 

  • Imperato A, Di Chiara G (1984) Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: a new method for the study of the in vivo release of endogenous dopamine and metabolites. J Neurosci 4:966

    PubMed  CAS  Google Scholar 

  • Imperato A, Mele A, Scrocco MG, Puglisi-Allegra S (1992) Chronic cocaine alters limbic extracellular dopamine. Neurochemical basis for addiction. Eur J Pharmacol 212:299–300

    Article  PubMed  CAS  Google Scholar 

  • Isenschmid DS, Fischman MW, Foltin RW, Caplan YH (1992) Concentration of cocaine and metabolites in plasma of humans following intravenous administration and smoking of cocaine. J Anal Tox 16:311–314

    CAS  Google Scholar 

  • Isner JM, Chokshi SK (1991) Cardiac complications of cocaine abuse. Annu Rev Med 42:133–138

    Article  PubMed  CAS  Google Scholar 

  • Isner JM, Estes NAM III, Thomson PD, Costanzo-Nordin MR, Subramanian R, Miller G, Katsas G, Sweeney K, Sturner W (1986) Acute cardiac events temporarily related to cocaine abuse. N Engl J Med 315:1438–1443

    Article  PubMed  CAS  Google Scholar 

  • Izenwasser S, Cox BM (1990) Daily cocaine treatment produces a persistent reduction of [3H]dopamine uptake in vitro in rat nucleus accumbens but not in striatum. Brain Res 531:338–341

    Article  PubMed  CAS  Google Scholar 

  • Jacobs IG Roszler MH, Kelly JK, Klein MA, Klin GA (1989) Cocaine abuse: neurovascular complications. Radiology 170:223–227

    Google Scholar 

  • Jaffe J (1985) Drug addiction and drug abuse. In: Gilman AG, Goodman LS, Rall TW, Murad F (eds) The pharmacological basis of therapeutics. Macmillan New York PP 532–581

    Google Scholar 

  • Jain R, Gatti PJ, Visner M, Albrecht KG, Moront MG, Rackle CE, Gillis RA (1987) Effects of cocaine on cardiorespiratory function and on cardiovascular responses produced by bilateral carotid occlusion (BCO) and IV norepinephrine. Fed Proc 46:402

    Google Scholar 

  • Javaid JI, Musa MN, Fischman MW, Schuster CR, Davis JM (1983) Kinetics of cocaine in humans after intravenous and intranasal administration. Biopharm Drug Dispos 4:9–18

    Article  PubMed  CAS  Google Scholar 

  • Javaid JL, Fischman MW, Schuster CR, Dekirmenjian H, Davis JM (1978) Cocaine plasma concentration: relation to physiological and subjective effects in humans. Science 202:227–227

    Article  PubMed  CAS  Google Scholar 

  • Johanson CE, Barrett JE (1993) The discriminative stimulus effects of cocaine in pigeons. J Pharmacol Exp Ther 267:1–8

    PubMed  CAS  Google Scholar 

  • Johanson CE, Fischman MF (1989) The pharmacology of cocaine related to its abuse. Pharmacol Rev 41:3–52

    PubMed  CAS  Google Scholar 

  • Johanson CE, Schuster CR (1981) Animal models of drug self-administration. In: Mello NK (ed) Advances in substance abuse: behavioral and biological research. JAI, Connecticut, pp 219–297

    Google Scholar 

  • Johnson KM, Bergmann JS, Kozikowski AP (1992) Cocaine and dopamine differentially protect [3H] mazindol binding sites from aklylation by N-ethylmaleimide. Eur J Pharmacol 227:411–415

    Article  PubMed  CAS  Google Scholar 

  • Justice JB (1987) Voltammetry in the neurosciences. Humana, Clifton

    Book  Google Scholar 

  • Kalivas PW, Duffy P (1990) Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse 5:48–58

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P (1993a) Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. J Neurosci 13:266–275

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P (1993b) Time course of extracellular dopamine and behavioral sensitization to cocaine. II. Dopamine perikarya. J Neurosci 13:276–284

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Rev 16:223–244

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Weber B (1988) Amphetamine injection into the ventral mesencephalon sensitizes rats to perpheral amphetamine and cocaine. J Pharmacol Exp Ther 245:1095–1102

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P, DuMars LA, Skinner C (1988) Behavioral and neurochemical effects of acute and daily cocaine administration in rats. J Pharmacol Exp Ther 245:485–492

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Striplin CD, Steketee JD, Klitenick MA, Duffy P (1992) Cellular mechanisms of behavioral sensitization to drugs of abuse. In: Kalivas PW, Samson HH (eds) The neurobiology of drug and alcohol addiction. New York Academy of Sciences, New York

    Google Scholar 

  • Kalivas PW, Sorg BA, Hooks MS (1993) The pharmacology and neural circuitry of sensitization to psychostimulants. Behav Pharmacol 4:315–334

    Article  PubMed  CAS  Google Scholar 

  • Katz JL, Terry P, Witkin J (1992) Comparative behavioral pharmacology and toxicology of cocaine and its ethanol-derived metabolite, cocaine ethyl-ester (cocaethylene). Life Sci 50:1351–1361

    Article  PubMed  CAS  Google Scholar 

  • Kaufman MJ, Spealman RD, Madras BK (1991) Distribution of cocaine recognition sites in monkey brain: I. In vitro autoradiography with [3H] CFT. Synapse 9: 177–187

    Article  PubMed  CAS  Google Scholar 

  • Kennedy LT, Hanbauer I (1983) Sodium-sensitive cocaine binding to rat striatal membrane: possible relationship to dopamine uptake sites. J Neurochem 41:172–178

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick GJ, Jones BJ, Tyers MB (1987) Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330:746–748

    Article  PubMed  CAS  Google Scholar 

  • Kilty JE, Lorang D, Amara SG (1991) Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254:578–579

    Article  PubMed  CAS  Google Scholar 

  • Kitayama S, Shimada S, Xu H, Markham L, Donovan DM, Uhl GR (1992) Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc Natl Acad Sci USA 89:7782–7785

    Article  PubMed  CAS  Google Scholar 

  • Kleber H (1988) Introduction-cocaine abuse: historical, epidemiological, and psychological prerspectives. J Clin Psychiatry 49:3–6

    PubMed  Google Scholar 

  • Kleven MS, Woolverton WL (1990) Effects of bromocriptine and desipramine on behavior maintained by cocaine or food presentation in rhesus monkeys. Psychopharmacology 101:208–213

    Article  PubMed  CAS  Google Scholar 

  • Kleven MS, Woolverton WL, Seiden LS (1988) Lack of long-term monoamine depletions following continuous or repeated exposure to cocaine. Brain Res Bull 21:233–237

    Article  PubMed  CAS  Google Scholar 

  • Kleven MS, Anthony EW, Woolverton WL (1990a) Pharmacological characterization of the discriminative stimulus effects of cocaine in rhesus monkeys. J Pharmacol Exp Ther 254:312–317

    PubMed  CAS  Google Scholar 

  • Kleven MS, Perry BD, Woolverton WL, Seiden LS (1990b) Effects of repeated injections of cocaine on D1 and D2 dopamine receptors in rat brain. Brain Res 532:265–270

    Article  PubMed  CAS  Google Scholar 

  • Koe BK (1976) Molecular geometry of inhibitors of the uptake of catecholamines and serotonin in synaptosomal preparations of rat brain. J Pharmacol Exp Ther 199:649–661

    PubMed  CAS  Google Scholar 

  • Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Le HT, Creese I (1987) The D1 dopamine receptor antagonist SCH 23390 increases cocaine self-administration in the rat. Neurosci Lett 79:315–20

    Article  PubMed  CAS  Google Scholar 

  • Kosten RT, Morgan CM, Falcione J, Schottenfeld RS (1992) Pharmacotherapy for cocaine-abusing methadone-maintained patients using amantadine or desipramine. Arch Gen Psychiatry 49:894–898

    PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal DS (1988) Psychomotor stimulant-induced sensitization: behavioral and neurochemical correlates. In: Kalivas PW, Barnes CD (eds) Sensitization in the nervous system. Telford, Caldwell, pp 175–206

    Google Scholar 

  • Kuczenski R, Segal DS (1992) Differential effects of amphetamine and dopamine uptake blockers (cocaine, nomifensine) on caudate and accumbens dialysate dopamine and 3-methoxytyramine. J Pharmacol Exp Ther 262:1085–1094

    PubMed  CAS  Google Scholar 

  • Kuhar MJ, Ritz MC, Boja JW (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci 14:299–302

    Article  PubMed  CAS  Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1990) Actions of cocaine on rat dopaminergic neurones in vitro. Br J Pharmacol 99:731–735

    PubMed  CAS  Google Scholar 

  • Landry DW, Zhao K, Yang GX-Q, Glickman M, Georgiadis TM (1993) Antibody-catalyzed degradation of cocaine. Science 259:1899–1901

    Article  PubMed  CAS  Google Scholar 

  • Lange RA, Cigarroa RG, Yancy CW, Willard JE, Popma JJ, Sills MN, McBride W, Kim AS, Hillis LD (1989) Cocaine-induced coronary-artery vasoconstriction. N Engl J Med 321:1557–1562

    Article  PubMed  CAS  Google Scholar 

  • Leal J, Ziedonis D, Kosten T (1994) Antisocial personality disorder as a prognostic factor for pharmacotherapy of cocaine dependence. Drug Alcohol Depend 35:31–35

    Article  PubMed  CAS  Google Scholar 

  • Lesko LM, Fischman MW, Javaid JI, Davis JM (1982) Iatrogenous cocaine psychosis. N Engl J Med 307:1153

    PubMed  CAS  Google Scholar 

  • Levin FR, Lehman AF (1991) Meta-analysis of desipramine as an adjunct in the treatment of cocaine addiction. J Clin Psychopharmacol 11:374–378

    Article  PubMed  CAS  Google Scholar 

  • Levine SR, Washington JM, Moen M, Kieran SN, Junger S, Welch KMA (1987) Crack-associated stroke. Neurology 37:1092–1093

    PubMed  CAS  Google Scholar 

  • Lew MJ, Angus JA (1983) Disadvantages of cocaine as a neuronal uptake blocking agent: comparison with desipramine in guinea-pig right atrium. J Auton Pharmacol 3:61–71

    Article  PubMed  CAS  Google Scholar 

  • Lew R, Vaughan R, Simantov R et al. (1991) Dopamine transporters in the nucleus accumbens and the striatum have different apparent molecular weights. Synapse 8:152–153

    Article  PubMed  CAS  Google Scholar 

  • Lichtenfeld PJ, Rubin DB, Feldman RS (1984) Subarachnoid hemorrhage precipitated by cocaine snorting. Arch Neurol 41:223–224

    PubMed  CAS  Google Scholar 

  • Loh EA, Roberts DCS (1990) Break-points on a progressive ratio schedule reinforced by intravenous cocaine increase following depletion of forebrain serotonin. Psychopharmacology 101:262–266

    Article  PubMed  CAS  Google Scholar 

  • Lutiger B, Graham K, Einarson TR, Koren G (1991) Relationshiop between gestational cocaine use and pregnancy outcome: a meta-analysis. Teratology 44:405–414

    Article  PubMed  CAS  Google Scholar 

  • Madras BK, Fahey MA, Bergman J, Canfield DR, Spealman RD (1989) Effects of cocaine and related drugs in nonhuman primates. I. [3H] Cocaine binding sites in caudate-putamen. J Pharmacol Exp Ther 251:131–141

    PubMed  CAS  Google Scholar 

  • Magnano CL, Gardner JM, Karmel BZ (1992) Differences in salivary cortisol levels in cocaine-exposed and noncocaine-exposed NICU infants. Dev Psychobiol 25:93–103

    Article  PubMed  CAS  Google Scholar 

  • Maisonneuve IM, Keller RW, Glick SD (1990) Similar effects of d-amphetamine and cocaine on extracellular dopamine levels in medial prefrontal cortex in rats. Brain Res 535:221–226

    Article  PubMed  CAS  Google Scholar 

  • Majid PA, Cheirif JB, Rikey R, Sanders WE, Patel B, Zimmerman JL, Dellinger RP (1992) Does cocaine cause coronary vasospasm in chronic cocaine abusers? A study of coronary and systemic hemodynamics. Clin Cardiol 15:253–258

    Article  PubMed  CAS  Google Scholar 

  • Maldonado R, Robledo P, Chover AJ, Caine SB, Koob GF (1993) D1 dopamine receptors in the nucleus accumbens modulate cocaine self-administration in the rat. Pharmacol Biochem Behav 45:239–242

    Article  PubMed  CAS  Google Scholar 

  • Manschreck TC, Allen DF, Neville M (1987) Freebase psychosis: cases from a Bahamian epidemic of cocaine abuse. Compr Psychiatry 28:555–564

    Article  PubMed  CAS  Google Scholar 

  • Markou A, Koob GF (1991) Postcocaine anhedonia: an animal model of cocaine withdrawal. Neuropsychopharmacology 4:17–26

    PubMed  CAS  Google Scholar 

  • Martin-Iverson MT, Szostak C, Fibiger HC (1986) 6-Hydroxydopamine lesions of the medial prefrontal cortex fail to influence intravenous self-administration of cocaine. Psychopharmacology 88:310–314

    Article  PubMed  CAS  Google Scholar 

  • Mayfield RD, Larson G, Zahniser NR (1992) Cocaine-induced behavioral sensitization and D1 dopamine receptor function in rat nucleus accumbens and striatum. Brian Res 573:331–335

    Article  CAS  Google Scholar 

  • Meisch RA, Bell SM, Lemaire GA (1993) Orally self-administered cocaine in rhesus monkeys — transition from negative or neutral behavioral effects to positive reinforcing effects. Drug Alcohol Depend 32:143–158

    Article  PubMed  CAS  Google Scholar 

  • Mello NK, Mendelson JH, Bree MP, Lukas SE (1989) Buprenorphine suppresses cocaine self-administration by rhesus monkeys. Science 245:859–862

    Article  PubMed  CAS  Google Scholar 

  • Mello NK, Lukas SE, Bree MP, Mendelson JH (1990a) Desipramine effects on cocaine self-administration by rhesus monkeys. Drug Alcohol Depend 26:103–116

    Article  PubMed  CAS  Google Scholar 

  • Mello NK, Mendelson JH, Bree MP, Lukas S (1990b) Buprenorphine and naltrexone effects on cocaine self-administration by rhesus monkeys. J Pharmacol Exp Ther 254(3):926–939

    PubMed  CAS  Google Scholar 

  • Mendelson JH, Mello NK, Teoh SK, J.E, Cochin J (1989) Cocaine effects on pulsatile secretion of anterior pituitary, gonadal, and adrenal hormones. J Clin Endocrinol Metab 69:1256–1260

    Article  PubMed  CAS  Google Scholar 

  • Minor RL, Scott BD, Brown DD, Winniford MD (1991) Cocaine-induced myocardial infarction in patients with normal coronary arteries. Ann Intern Med 115:797–806

    PubMed  Google Scholar 

  • Mittleman RE, Wetli CV (1984) Death caused by recreational cocaine use. An update. JAMA 252:1889–1893

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B, Bunney BS (1989) Differential effect of cocaine on extracellular dopamine levels in rat prefrontal cortex and nucleus accumbens: comparison to amphetamine. Synapse 4:156–161

    Article  PubMed  CAS  Google Scholar 

  • Molina VA, Wagner JM, Spear LP (1994) The behavioral response to stress is altered in adult rats exposed prenatally to cocaine. Physiol Behav 55:941–945

    Article  PubMed  CAS  Google Scholar 

  • Musto DF (1992) Cocaine’s history, especially the American experience. In: Edwards G (ed) Cocaine: scientific and social dimensions. Wiley Chichester

    Google Scholar 

  • National Institute on Drug Abuse (1992) Epidemiologic trends in drug abuse. In Community Epidemiology Work Group, publication number 93–3560 (575 pp). National Institutes of Health, Washington DC

    Google Scholar 

  • Nestler EJ, Termwilliger RZ, Walker JR, Sevarino KA, Duman RS (1990) Chronic cocaine treatment descreases levels of the G protein subunits Gia and Goa in discrete regions of rat brain. J Neurochem 55:1079–1082

    Article  PubMed  CAS  Google Scholar 

  • Neuspiel DR (1994) Overview: behavior in cocaine-exposed infants and children: Association versus causality. Drug Alcohol Depend 36:101–108

    Article  PubMed  CAS  Google Scholar 

  • Ng JP, Hubert GW, Justice JB (1991) Increased stimulated release and uptake of dopamine in nucleus accumbens after repeated cocaine adminstration as measured by in vivo voltammetry. J Neurochem 56:1485–1492

    Article  PubMed  CAS  Google Scholar 

  • O’Brien CP, Childress AR, Arndt IO, McLellan AT, Woody GE, Maany I (1988) Pharmacological and behavioral treatments of cocaine dependence: controlled studies. J Clin Psychiatry 49 [Suppl]:17–22

    PubMed  Google Scholar 

  • Ostrea EM, Brady M, Gause S, Raymundo AL, Stevens M (1992) Drug screening of newborns by meconium analysis: a large-scale, prospective, epidemiologic study. Pediatrics 89:107–113

    PubMed  Google Scholar 

  • Paly D, Jatlow P, Van Dyke C, Cabieses F, Byck R (1980) Plasma levels of cocaine in native Peruvian coca chewers. In: Jeri FR (ed) Cocaine, 1980, proceedings of the Interamerican seminar on medical and sociological aspects of coca and cocaine. Pacific, Lima, PP 86 – 89

    Google Scholar 

  • Parsons LH, Smith AD, Justice JB (1991) Basal extracellular dopamine is decreased in the rat neucleus accumbens during abstinence from chronic cocaine. Synapse 9:60–65

    Article  PubMed  CAS  Google Scholar 

  • Patel A, Boja J, Lever J, Lew R, Simantov R, Carroll FI, Lewin AH, Philip A, Gao Y, Kuhar MJ (1992) A cocaine analog and a GBR analog label the same protein in rat striatal membranes. Brain Res 576:173–174

    Article  PubMed  CAS  Google Scholar 

  • Pentel PR, Hatsukami D 1994 12-lead and continuous ECG recordings of subjects during inpatient administration of smoked cocaine. Drug Alcohol Depend 35:107–116

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes M, Jeffcoat AR (1992) Ethanol/cocaine interaction: cocaine and cocaethylene plasma concentrations and their relationship to subjective and cardiovascular effects. Life Sci 51:553–563

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes M, Di Guiseppi S, Ondrusek G, Jeffcoat AR, Cook CE (1982) Freebase cocaine smoking. Clin Pharmacol Ther 32:459–465

    Article  PubMed  CAS  Google Scholar 

  • Peris J, Boyson SJ, Cass WA, Curella P, Dwoskin L, Larson G, Lin L-H, Yasuda R, Zahniser N (1990) Persistence of neurochemical changes in dopamine systems after repeated cocaine administration. J Pharmacol Exp Ther 253:38–44

    PubMed  CAS  Google Scholar 

  • Pettit H, Justice J Jr (1989) Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis. Pharmcol Biochem Behav 34:899–904

    Article  CAS  Google Scholar 

  • Pettit HO, Justice JB (1991) Effect of dose on cocaine self- administration behavior and dopamine levels in the nucleus accumbens. Brain Res 539:94–102

    Article  PubMed  CAS  Google Scholar 

  • Pettit HO, Pan H-T Parsons LH, Justice JB (1990) Extracellular concentrations of cocaine and dopamine are enhanced during chronic cocaine administration. J Neurochem 55:798–804

    Article  PubMed  CAS  Google Scholar 

  • Pitts DK, Marwah J (1987) Cocaine modulation of central monoaminerglc neurotransmission. Pharmacol Biochem Behav 26:453–461

    Article  PubMed  CAS  Google Scholar 

  • Pollock DA, Holmgreen P, Lui K-J, Kirk ML (1991) Discrepancies in the reported frequency of cocaine-related deaths, United States, 1983 through 1988. JAMA 266:2233–2237

    Article  PubMed  CAS  Google Scholar 

  • Post RM, Kopanda RT, Black KE (1976) Progressive effects of cocaine on behavior and central amine metabolism in rhesus monkeys: relationship to kindling and psychosis. Biol Psychiatry 11:403–419

    PubMed  CAS  Google Scholar 

  • Post RM, Lickfeld A, Squillace KM, Contel NR (1981) Drug-environment interaction: context dependency of cocaine induced behavioral sensitization. Life Sci 28:755–760

    Article  PubMed  CAS  Google Scholar 

  • Pulvirenti L, Maldonado-Lopez R, Koob GF (1992) MNDA receptors in the nucleus accumbens modulate intravenous cocaine but not heroin self-administration in the rat. Brain Res 594:327–330

    Article  PubMed  CAS  Google Scholar 

  • Racine A, Joyce T, Anderson R (1993) The association between prenatal care and birth weight among women exposed to cocaine in New York City. JAMA 270:13

    Article  Google Scholar 

  • Reith MEA, Sershen H, Allen DL, Lajtha A (1983) A Portion of [3H] cocaine binding in brain is associated with serotonergic neurons. Mol Pharmacol 23:600–606

    PubMed  CAS  Google Scholar 

  • Reith MEA, de Costa B, Rice KC, Jacobson AE (1992) Evidence for mutually exclusive binding of cocaine BTCP, GBR 12935, and dopamine to the dopamine transporter. Eur J Pharmacol 227:417–425

    Article  PubMed  CAS  Google Scholar 

  • Ritchie JM, Greene NM (1990) Local anesthetics. In: Gilman AG, Rall TW, Nies AS, Taylor P (eds) Goodman and Gilman’s the pharmacological basis of therapeutics. Pergamon, New York, PP 311–331

    Google Scholar 

  • Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237:1219–23

    Article  PubMed  CAS  Google Scholar 

  • Ritz MC, Boja JW, Grigoriadis D, Zaczek R, Carroll FI, Lewis AH, Kuhar MJ (1990a) [3H]WIN 35,065-2: a ligand for cocaine receptors in striatum. J Neurochem 55:1556–1562

    Article  PubMed  CAS  Google Scholar 

  • Ritz MC, Cone EJ, Kuhar MJ (1990b) Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transporters: a structure-activity study. Life Sci 46:635–645

    Article  PubMed  CAS  Google Scholar 

  • Ritz MC, Kuhar MJ, George FR (1992) Molecular mechanisms associated with cocaine effects: Possible relationships with effects of ethanol. In: Galanter M(ed) Recent development in alcoholism, vol 10: alcohol and cocaine: similarities and differences. Plenum, New York, pp 273–302

    Google Scholar 

  • Roberts DCS (1993) Self-administration of GBR 12909 on a fixed ratio and progressive ratio schedule in rats. Psychopharmacology 111:202–206

    Article  PubMed  CAS  Google Scholar 

  • Roberts DCS, Koob GF (1982) Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol Biochem Behav 17:901–904

    Article  PubMed  CAS  Google Scholar 

  • Roberts DCS, Corcoran ME, Fibiger HC (1977) On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol Biochem Behav 6:615–620

    Article  PubMed  CAS  Google Scholar 

  • Roberts DCS, Koob GF, Klonoff P, Fibiger HC (1980) Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol Biochem Behav 12:781–787

    Article  PubMed  CAS  Google Scholar 

  • Roberts DCS, Loh EA, Vickers G (1989) Self-administration of cocaine on a progressive ratio shedule in rats: dose-response relationship and effect of haloperidol pretreatment. Psychopharmacology 97:535–538

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE (1988) Stimulant drugs and stress: Factors influencing individual differences in the susceptibility to sensitization. In: Kalivas PW, Barnes CD (eds) Sensitization in the nervous systems. Telford, Caldwell, pp 145–173

    Google Scholar 

  • Ross SB, Renyi AL (1969) Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue. Eur J Pharmacol 7:270–277

    Article  PubMed  CAS  Google Scholar 

  • Rossetti ZL, Hmaidan Y, Gessa GL (1992) Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur J Pharmacol 221:227–234

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB (1990) High affinity dopamine reuptake inhibitors as potential cocaine antagonists: a strategy for drug development. Life Sci 46:17

    Article  Google Scholar 

  • Rothman RB, Mele A, Reid AA, Akunne HC, Greig N, Thurkauf A, DeCosta BR, Rice KC, Pert A (1991) GBR 12909 antagonizes the ability of cocaine to elevate extracellular levels of dopamine. Pharmacol Biochem Behav 40:387

    Article  PubMed  CAS  Google Scholar 

  • Rounsaville BJ, Foley-Anton S, Carroll K, Budde D, Pursoff BA, Gawin F (1991) Psychiatric diagnosis of treatment-seeking cocaine abusers. Arch Gen Psychiatry 48:43–51

    PubMed  CAS  Google Scholar 

  • Rubin RB, Neugarten J (1989) Cocaine rhabdomyolysis masquerading as myocardial ischemia. Am J Med 86:551–553

    Article  PubMed  CAS  Google Scholar 

  • Satel SL, Price LH, Palumbo JM, McDougle CJ, Krystal JH, Gawin G, Charney DS, Heninger GR, Kleber HK (1991) Clinical phenomenology and neurobiology of cocaine abstinence: a prospective inpatient study. Am J Psychiatry 148:1712–1716

    PubMed  CAS  Google Scholar 

  • Schenk S, Horger BA, Peltier R, Shelton K (1991) Supersensitivity to the reinforcing effects of cocaine following 6-hydroxydopamine lesions to the medial prefrontal cortex in rats. Brain Res 543:227–235

    Article  PubMed  CAS  Google Scholar 

  • Schenk S, Valadez A, McNamara C, House DT, Higley D, Bankson MG, Gibbs S, Horger BA (1993) Development and expression of sensitization to cocaine’s reinforcing properties: role of NMDA receptors. Psychopharmacology 111:332–338

    Article  PubMed  CAS  Google Scholar 

  • Schenker S, Yang YQ, Johnson RF, Downing JW, Schenken RS, Henderson GI, King TS (1993) The transfer of cocaine and its metabolites across the term human placenta. Clin Pharmacol Ther 53:329–339

    Article  PubMed  CAS  Google Scholar 

  • Schuster CR, Johanson CE (1988) Relationship between the discriminative stimulus properties and subjective effects of drugs. In: Colpaert FC, Balster RL (eds) Transduction mechanisms of drug stimuli. Springer, Berlin Heidelberg New York, pp 161–175 (Psychopharmacology series, vol 4 )

    Google Scholar 

  • Schwartz KA, Cohen JA (1984) Subarachnoid hemorrhage precipitated by cocaine snorting. Arch Neurol 41: 704

    Google Scholar 

  • Seiden LS, Ricaurte GA (1987) Neurotoxicity of methamphetamine and related drugs. In: Meltzer HY (ed) Psychophamacology: the third generation of progress. Raven, New York

    Google Scholar 

  • Sherer MA, Kumor KM, Cone EJ, Jaffe JH (1988) Suspiciousness induced by fourhour intravenous infusions of cocaine. Arch Gen Psychiatry 45:673–677

    PubMed  CAS  Google Scholar 

  • Shimada S, Kitayama S, Lin C-L, Patel A, Nanthakumar E, Gregor P, Kuhar M, Uhl G (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254:576–577

    Article  PubMed  CAS  Google Scholar 

  • Siegel RK (1978) Cocaine hallucinations. Am J Psychiatry 135:309–314

    PubMed  CAS  Google Scholar 

  • Smith HWB, Liberman HA, Broady SL, Battey LL, Donohue BC, Morris DC (1987) Acute myocardial infarction temporally related to cocaine use. Ann Intern Med 107:13–18

    PubMed  Google Scholar 

  • Spealman RD, Bergman J, Madras BK (1991a) Self-administration of the highaffinity cocaine analog 2ba-carbomethoxy-3b-(4-fluorophenyl)tropane. Pharmacol Biochem Behav 39:1011–1013

    Article  PubMed  CAS  Google Scholar 

  • Spealman RD, Bergman J, Madras BK, Melia KF (1991b) Discriminative stimulus effects of cocaine in squirrel monkeys: involvement of dopamine receptor subtypes. J Pharmacol Exp Ther 258:945–953

    PubMed  CAS  Google Scholar 

  • Spear LP, Kirstein CL, Bell J, Yoottanasumpun V, Greenbaum R, O’Shea J, Hoffman H, Spear NE (1989a) Effects of prenatal cocaine exposure on behavior during the early postnatal period. Neurotoxicol Teratol 11:57–63

    Article  PubMed  CAS  Google Scholar 

  • Spear LP, Kirstein CL, Frambes NA (1989b) Cocaine effects on the developing central nervous system: behavioral, psychopharmacological, and neurochemical studies. Ann NY Acad Sci 526:290–307

    Article  Google Scholar 

  • Steketee JD, Kalivas PW (1991) Sensitization to psychostimulants and stress after injection of pertussis toxin into the A10 dopamine region. J Pharmacol Exp Ther 259:916–924

    PubMed  CAS  Google Scholar 

  • Steketee JD, Striplin CD, Murray TF, Kalivas PW (1991) Possible role for Gproteins in behavioral sensitization to cocaine. Brain Res 545:287–291

    Article  PubMed  CAS  Google Scholar 

  • Stewart DM, Rogers WP, Hahaffey JE, Witherspoon S, Woods EF (1963) Effect of local anesthetics on the cardiovascular system of the dog. Anesthesiology 24:620–624

    Article  PubMed  CAS  Google Scholar 

  • Stewart J, Vezina P (1989) Microinjections of SCH-23390 into the ventral tegmental area and substantia nigra pars reticulata attenuate the development of sensitization to the locomotor activating effects of systemic amphetamine. Brain Res 495:401–406

    Article  PubMed  CAS  Google Scholar 

  • Tang M, Falk JL (1987) Oral self-administration of cocaine: chronic excessive intake by schedule induction. Pharmacol Biochem Behav 28:517–519

    Article  PubMed  CAS  Google Scholar 

  • Tennant FS, Sagherian AA (1987) Double-blind comparison of amantadine and bromocriptine for ambulatory withdrawal from cocaine dependence. Arch Intern Med 147:109–112

    Article  PubMed  Google Scholar 

  • Terwilliger RZ, Beitner-Johnson D, Sevarino KA, Crain SM, Nestler EJ (1991) A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res 548:100–110

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg U (1968) The effect of cocaine on the pacemaker of isolated guineapig atria. J Pharmacol Exp Ther 161:222–231

    PubMed  CAS  Google Scholar 

  • Trulson ME, Ulissey JJ (1987) Chronic cocaine administration decreases dopamine synthesis rate and increases [3H]spiroperidol binding in rat brain. Brain Res Bull 19:35–38

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1984) Measurement of neurotransmitter release by intracranial dialysis. In: Marsden CA (ed) Measurement of neurotransmitter release in vivo. Wiley, London, pp 81–105

    Google Scholar 

  • Van Dyke C, Jatlow P, Ungerer J, Barash PG, Byck R (1978) Oral cocaine: plasma concentrations and central effects. Science 200:211–213

    Article  PubMed  Google Scholar 

  • Vitti TG, Boni RL (1985) Metabolism of cocaine. In: Barnett G, Chiang CN (eds) Pharmacokinetics and pharmacodynamics of psychoactive drugs: a research monograph. Biomedical, Foster City, pp 427–440

    Google Scholar 

  • Volkow ND, Gould KL, Mullani N, Adler S, Krajewski K (1987) Changes in cerebral blood flow of chronic cocaine users. J Cereb Blood Flow Metab 7 [Suppl]:5292

    Google Scholar 

  • Volkow ND, Mullani N, Gould KL, Adler S, Krajewski K (1988) Cerebral blood flow in chronic cocaine users: a study with positron emission tomography. Br J Psychiatry 152:641–648

    Article  PubMed  CAS  Google Scholar 

  • Voikow ND, Fowler JS, Wolf AP, Hitzemann R, Dewey S, Bendriem B, Alpert R, Hoff A (1991) Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am J Psychiatry 148:621–626

    Google Scholar 

  • Watson SJ, Trujillo KA, Herman JP, Akil H (1988) Neuroanatomical and neurochemical substrates of drug-seeking behavior: overview and future directions. In: Goldstein A (ed) Molecular and cellular aspects of the drug addictions. Springer, Berlin Heidelberg New York, pp 29–91

    Google Scholar 

  • Weddington W, Brown BS, Haertzen CA, Cone EJ, Dax EM, Herning RI, Michaelson BS (1990) Changes in mood, craving, and sleep during short-term abstinence reported by male cocaine addicts: A controlled, residential study. Arch Gen Psychiatry 47:861–868

    PubMed  CAS  Google Scholar 

  • Weddington W, Brown BS, Haertzen CA, Hess JM, Mahaffey JR, Kolar AF, Jeffe JH (1991) Comparison of amantadine and desipramine combined with psychotherapy for treatment of cocaine dependence. Am J Drug Alcohol Abuse 17:137–152

    Article  PubMed  Google Scholar 

  • Weed MR, Vanover KE, Woolverton WL (1993) Reinforcing effect of the D1 dopamine agonist SKF 81297 in rhesus monkeys. Psychopharmacology 113:51–52

    Article  PubMed  CAS  Google Scholar 

  • Weiss F, Markou A, Lorang MT, Koob GF (1992a) Basal extracellular dopamine levels in the nucleus accumbens are decreased during cocaine withdrawal after unlimited-access self-administration. Brain Res 593:314–318

    Article  PubMed  CAS  Google Scholar 

  • Weiss F, Paulus MP, Lorang MR, Koob GF (1992b) Increases in extracellular dopamine in the nucleus accumbens by cocaine are inversely related to basal levels: Effects of acute and repeated administration. J Neurosci 12:4372–4380

    PubMed  CAS  Google Scholar 

  • Weiss RD (1988a) Protracted elimination of cocaine metabolites in long-term, highdose cocaine abusers. Am J Med 85:879–880

    Article  PubMed  CAS  Google Scholar 

  • Weiss RD (1988b) Relapse to cocaine abuse after initiating desipramine treatment. J Am Med Assoc 260:2545–2546

    Article  CAS  Google Scholar 

  • Weiss RD, Mirin SM, Griffin ML, Michael JL (1988) Psychopathology in cocaine abusers: changing trends. J Nerv Ment Dis 176:719–725

    Article  PubMed  CAS  Google Scholar 

  • Wetli CV, Wright RK (1979) Death caused by recreational cocaine use. JAMA 241:2519–2522

    Article  PubMed  CAS  Google Scholar 

  • Wiggins RC, Rolsten C, Ruiz B, Davis CM (1989) Pharmacokinetics of cocaine: basic studies of route, dosage, pregnancy, and lactation. Neurotoxicology 10:367–382

    PubMed  CAS  Google Scholar 

  • Wilkerson RD (1988) Cardiovascular toxicity of cocaine. In: Clouet D, Ashgar K, Brown R (eds) Mechanisms of cocaine abuse and toxicity. US Government Printing Office, Washington DC, pp 304–324

    Google Scholar 

  • Wilson MC, Schuster CR (1976) Mazindol self-administration in the rhesus monkey. Pharmacol Biochem Behav 4:207–210

    Article  PubMed  CAS  Google Scholar 

  • Winger G, Skjoldager P, Woods JH (1992) Effects of buprenorphine and other opioid agonists and antagonists on alfentanil- and cocaine-reinforced responding in rhesus monkeys. J Pharmacol Exp Ther 261:311–317

    PubMed  CAS  Google Scholar 

  • Wise R, Rompre P (1989) Brain dopamine and reward. Annu Rev Psychol, 40:191–225

    Article  PubMed  CAS  Google Scholar 

  • Witkin JM, Nichols DE, Terry P, Katz JL (1991) Behavioral effects of selective dopaminergic compounds in rats discriminating cocaine injection. J Pharmacol Exp Ther 257:706–713

    PubMed  CAS  Google Scholar 

  • Woolverton WL (1986) Effects of a D1 and a D2 dopamine antagonist on the self-administration of cocaine and piribedil by rhesus monkeys. Pharmacol Biochem Behav 24:531–535

    Article  PubMed  CAS  Google Scholar 

  • Woolverton WL, Virus RM (1989) The effects of a D1 and a D2 dopamine antagonist on behavior maintained by cocaine or food. Pharmacol Biochem Behav 32:691–697

    Article  PubMed  CAS  Google Scholar 

  • Woolverton WL, Goldberg LI, Ginos JE (1984) Intravenous self-administration of dopamine receptor agonists by rhesus monkeys. J Pharmacol Exp Ther 230:678–683

    PubMed  CAS  Google Scholar 

  • Yeh SY, De Souza EB (1991) Lack of neurochemical evidence for neurotoxic effects of repeated cocaine administration in rats on brain monoamine neurons. Drug Alcohol Depend 27:51–61

    Article  PubMed  CAS  Google Scholar 

  • Yi S-J, Johnson KM (1990) Effects of acute and chronic administration of cocaine on striatal uptake, compartmentalization and release of [3H] dopamine. Neuropharmacology 29:475–486

    Article  PubMed  Google Scholar 

  • Young AM, Herling S (1986) Drugs as reinforcers: studies in laboratory animals. In: Goldberg SR, Stolerman IP (eds) Behavioral analysis of drug dependence. Academic, Orlando, pp 9–67

    Google Scholar 

  • Zimmerman JL, Dellinger RP, Majid PA (1991) Cocaine associated chest pain. Ann Emerg Med 20:611–615

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischman, M.W., Johanson, CE. (1996). Cocaine. In: Schuster, C.R., Kuhar, M.J. (eds) Pharmacological Aspects of Drug Dependence. Handbook of Experimental Pharmacology, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60963-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60963-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64631-7

  • Online ISBN: 978-3-642-60963-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics