Skip to main content

Fallopian Tube Physiology and Its Clinical Implications

  • Conference paper
Book cover New Trends in Reproductive Medicine

Abstract

The fallopian tube has many active roles in the process of reproduction, which include ovum pick-up, transportation of both sets of gametes to the site of fertilisation within well-defined time limits, providing an environment in which final gamete maturation and fertilisation take place, and maintenance of the gametes and the pre-embryo, which is delivered to the uterine cavity at a time when conditions are optimal for nidation. Furthermore, the sperm and pre-embryo, which differ antigenically from the mother, are not attacked by the immune system, which differentiates between them and pathogens. The mechanisms by which all these complex processes are controlled are not all well understood, and currently the principial means of assessing tubal function is to observe tubal patency and normal morphological characteristics at endoscopy (Maguiness et al. 1992a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson DH (1927a) The rate of passage of the mammalian ovum through various portions of the Fallopian tube. Am J Physiol 82:557–569

    Google Scholar 

  • Anderson DH (1927b) Lmyphatics of the Fallopian tube of the sow. Contrib Embryol Carneg Inst 19:135–148

    Google Scholar 

  • Anderson DH (1928) Comparative anatomy of the utero-tubal junction. Histology and physiology in the sow. Am J Anat 42:255–305

    Article  Google Scholar 

  • Batra S, Helm G, Owman C, Sioberg NO, Wales B (1980) Female sex steroid concentrations in the ampullary ana isthmic regions of the human fallopian tube and their relationship to plasma concentration during the menstrual cycle. Am J Obstet Gynecol 136:986–991

    PubMed  CAS  Google Scholar 

  • Bishop DW (1956) Active secretion in ther rabbit oviduct. Am J Physiol 187:347–352

    PubMed  CAS  Google Scholar 

  • Belve AR, McDonald MF (1968) Directional flow of fallopian tube secretion in the Romney ewe. J Reprod Fertil 6:275

    Google Scholar 

  • Blandau RJ (1969) Gamete transport — comparative aspects. In: Hafez ESE, Blandau RJ (eds) The mammalian oviduct. University of Chicago Press, Chicago, pp 129–162

    Google Scholar 

  • Blandau RJ (1973) Gamete transport in the female mammal. In: Greep RO, Astwood EB (eds) Handbook of physiology, section 7, endocrinology II. American Physiology Society, Washington, pp 153–163

    Google Scholar 

  • Blandau RJ, Gaddum-Rosse P (1974) Mechanism of sperm transport in pig oviducts. Fertil Steril 25:61–67

    PubMed  CAS  Google Scholar 

  • Blandau RJ, Verdugo P (1976) An overview of gamete transport — comparative aspects. In: Harper MJK, Pauerstein CJ et al (eds) Symposium on ovum transport and fertility regulation. Scriptor, Copenhagen, pp 138–156

    Google Scholar 

  • Bolton AE, Clough KJ, Stocker RJ, Pockley AG, Mowles EA, Westwood OMR, Chapman MG (1987) Identification of placental protein 14 as an immunosuppressive factor in human in reproduction. Lancet 1:593–595

    Article  PubMed  CAS  Google Scholar 

  • Borell U, Nilsson O, Westman A (1957) Ciliary activity in the rabbit fallopian tube during oestrus and copulation. Acta Obstet Gynaecol Scand 36:22–28

    Article  CAS  Google Scholar 

  • Borland RM, Hazra S, Biggers JD, Lechene CP (1977) The elemental composition of the environments of the gametes and preimplantation embryo during the initiation of pregnancy. Biol Reprod 16:147–157

    Article  PubMed  CAS  Google Scholar 

  • Borland RM, Biggers JD, Lechene CP, Taymor ML (1980) Elemental composition of the fluid in the human fallopian tube. J Reprod Fertil 58:479–482

    Article  PubMed  CAS  Google Scholar 

  • Breihpol W (1938) Experimentelle Untersuchungen über Bewegungen menschlicher Eileiter in den verschiedenen Phasen des Zyklus und der Schwangerschaft. Geburtsh Gynakol 118:1–27

    Google Scholar 

  • Brenner RM (1969) Renewal of oviduct cilia during the menstrual cycle in the rhesus monkey. Fertil Steril 20:599–611

    PubMed  CAS  Google Scholar 

  • Brower LK, Anderson E (1969) Cytological events associated with the secretory process in the rabbit oviduct. Biol Reprod 1:130–148

    Article  Google Scholar 

  • Butzow R (1989) The human fallopian tube contains placental protein 5. Hum Reprod 4:17–20

    PubMed  CAS  Google Scholar 

  • Clewe TH, Mastroianni L (1960) A method for continuous volumetric collection of oviduct secretions. J Reprod Fertil 1:146–150

    Article  Google Scholar 

  • Croxatto HB, Ortiz ME (1975) Egg transport in the fallopian tube. Gynaecol Obstet Invest 6:215–225

    Article  CAS  Google Scholar 

  • Devoto L, Soto E, Magofke AM, Sierralta W (1980) Unconjugated steroids in the fallopian tube and peripheral blood during the normal menstrual cycle. Fertil Steril 33:613–617

    PubMed  CAS  Google Scholar 

  • Donnez J, Casanas-Roux F, Ferin J, Thomas K (1983) Changes in ciliation and cell height in human tubal epithelium in the fertile and post-fertile years. Maturitas 5:39–45

    Article  PubMed  CAS  Google Scholar 

  • Eddy CA, Garcia RG, Kraemer DC, Pauerstein CJ (1976) Ovum transport in non-human primates. In: Harper MJK, Pauerstein CJ, Adams CE, Coutinho EM, Croxatto HB, Paton DM (eds) Symposium on ovum transport and fertility regulation. Scriptor, Copenhagen, pp 447–453

    Google Scholar 

  • Edman (1983) The climacteric. In: Buchsbaum HJ (ed) The menopause. Springer, Berlin Heidelberg New York, pp 23–33

    Google Scholar 

  • Erb H (1969) Zur hormonalen Regulation der Tubenmotilität. In-vitro-Versuche an menschlichen Tuben. Bibl Gynakol 51:1–87

    CAS  Google Scholar 

  • Feigelson M, Kay E (1972) Protein patters of rabbit oviductal fluid. Biol Reprod 6:244–252

    PubMed  CAS  Google Scholar 

  • Flickinger GL, Elsner C, Illingworth DV, Muechler EK, Mikhail G (1977) Estrogen and progesterone receptors in the female genital tract of humans and monkeys. Ann N Y Acad Sci 286:180–189

    Article  PubMed  CAS  Google Scholar 

  • Fredricks CM (1986) Morphological and functional aspects of the oviduct epithelium. In: Siegler AM (ed) The fallopian tube: basic studies and clinical contributions. Futura, New York, pp 67–80

    Google Scholar 

  • Gaddum-Rosse P, Rumery RE, Blandau RJ, Thiersch JB (1975) Studies on the mucosa of post-menopausal oviducts: surface appearance, ciliary activity and the effect of oestrogen treatment. Fertil Steril 26:951–969

    PubMed  CAS  Google Scholar 

  • Gillet GY, Koritké JG (1967) Les artérioles spiralées de la trompe utérine chez la femme. Acta Anat 68:609

    Google Scholar 

  • Gillet GY, Leissner P (1967) Les variations de la microvascularisation de la trompe utérine au cours du cycle ovarien chez la femme. Acta Anat 68:608

    Google Scholar 

  • Greenwald GS (1958) Endocrine regulation of the mucin in the tubal epithelium of the rabbit. Anat Rec 130:477–495

    Article  PubMed  CAS  Google Scholar 

  • Hamner CE (1973) Oviductal fluid — composition and physiology. In: Greep RO, Astwood EB (eds) Handbook of physiology, section 7, endocrinology. American Physiological Society, Washington DC, pp 141–151

    Google Scholar 

  • Hamner CE, Fox SB (1969) Biochemistry of oviducatal secretions. In: Hafez ESE, Blandau RJ (eds) The mammalian oviduct. University of Chicago Press, Chicago, pp 333–355

    Google Scholar 

  • Hamner CE, Williams W (1965) Composition of rabbit oviductal secretions. Fertil Steril 16:170–176

    PubMed  CAS  Google Scholar 

  • Harper MJK (1961) The mechanisms involved in the movement of newly ovulated eggs through the ampulla of the rabbit Fallopian tube. J Reprod Fertil 2:522–524

    Google Scholar 

  • Helm G, Owman C, Rosengren E, Sjoberg N-O (1982a) Regional and cyclic variations in catecholamine concentration of the human fallopian tube. Biol Reprod 26:553–558

    Article  PubMed  CAS  Google Scholar 

  • Helm G, Owman C, Rosengren E, Sjoberg N-O, Walles B (1982b) Motor activity of the human fallopian tube in vitro in relation to plasma concentration of estradiol and progesterone

    Google Scholar 

  • Hunter RHF (1977) Function and multifunction of the Fallopian tubes in relation to gametes, embryos and hormones. Eur J Obstet Gynecol Reprod Biol 7:267–283

    Article  Google Scholar 

  • Hunter RHF (1988a) The fallopian tubes: their role in fertility and infertility. Springer, Berlin Heidelberg New York, pp 12–29

    Google Scholar 

  • Hunter RHF (1988b) The fallopian tubes: their role in fertility and infertility. Spinger, Berlin Heidelberg New York, pp 30–52

    Google Scholar 

  • Hunter RHF, Cook B, Poyser NL (1983) Regulation of oviduct function in pigs by local transfer of ovarian steroids and prostaglandins: a mechanism to influence sperm transport. Eur J Obstet Gynecol Reprod Biol 14:225–232

    Article  PubMed  CAS  Google Scholar 

  • Julkunen M, Walström T, Seppälä M (1986) Human fallopian tube contains placental protein 14. Am J Obstet Gynecol 154:1076–1079

    PubMed  CAS  Google Scholar 

  • Koritké JG, Gillet JY, Leissner P (1968a) La microvascularisation de la muqueuse tubaire et ses variations au cours du cycle ovarien chez la femme. Z Zellforsch 88:48–56

    Article  PubMed  Google Scholar 

  • Kortiké JG, Muller PG, Gillet JY (1968b) LA vascularisation de la trompe utérine chez la femme. Bull Fed Soc Gynaecol Obstet 20:405–407

    Google Scholar 

  • Lambert JC, Hammer Ce, Gemmill CL (1973) Ultrastructural study of secretion in the rabbit oviduct under different hormonal influences. Fed Proc 32:13 (abstract)

    Google Scholar 

  • Lee FC (1928) the utero-tubal junction in various animals. Bull Johns Hopkins Hosp 42:335–357

    Google Scholar 

  • Leese HK (1988) The formation and function of oviduct fluid. J Reprod Fertil 82:843–856

    Article  PubMed  CAS  Google Scholar 

  • Lindblom B, Hamberger L, Ljung B (1980) Contractile patterns of isolated oviductal smooth muscle under different hormonal conditions. Fertil Steril 33:283–287

    PubMed  CAS  Google Scholar 

  • Lippes J (1979) Analysis of human oviductal fluid for low molecular weight compounds. In: Beller FK, Schumacher GFB (eds) The biology of the fluids in the female genital tract. Elsevier, North Holland, pp 373–387

    Google Scholar 

  • Lippes J, Enders RG, Pragay DA, Bartholomew WR (1972) The collection and analysis of human fallopian tube fluid. Contraception 5:85–103

    Article  PubMed  CAS  Google Scholar 

  • Lippes J, Krasner J. Alfonso LA, Dacalos ED, Lucero R (1981) Human oviductal fluid proteins. Fertil Steril 36:623–629

    PubMed  CAS  Google Scholar 

  • Ludwig H, Metzer H (1976) The human reproductive tract. A scanning electron microscopic atlas. Springer, Berlin Heidelberg New York, pp 79–105

    Google Scholar 

  • Maas DHA, Storey BT, Mastroianni L (1976) Oxygen tension in the oviduct of the rhesus monkey (Macaca mullata). Fertil Steril 27:1312–1317

    PubMed  CAS  Google Scholar 

  • Maguiness SD, Djahanbakhch O (1992) Salpingoscopic findings in women undergoing sterilization. Hum Reprod 7:269–273

    PubMed  CAS  Google Scholar 

  • Maguiness SD, Shrimanker K, Djahanbakhch O, Grudzinskas JG (1992a) Oviduct proteins. Contemp Rev Obstet Gynaecol 4:42–50

    Google Scholar 

  • Maguiness SD, Djahanbakhch O, Grudzinskas JG (1992b) Assessment of the fallopian tube. Obstet Gynaecol Surg 47:587–603

    Article  CAS  Google Scholar 

  • Maguiness SD, Shrimanker K, Djahanbakhch O, Deeks J, Teisner B, Grudzinskas JG (1993a) In-vitro synthesis of total protein and placental protein 14 by the fallopian tube mucosa: variation in relation to anatomical site, the ovairan cycle and the menopause. Hum Reprod 7:269–273

    Google Scholar 

  • Maguiness SD, Shirmanker K, Djahanbakhch O, Teisner B, Grudzinskas JG (1993b) Evidence for the in-vitro de-novo synthesis of immunoglobulin and a previously undescribed 17 kDa protein (TEP-2) by the mucosa of the fallopian tube. Hum Reprod 8:1199–1202

    PubMed  CAS  Google Scholar 

  • Mastroianni L, Jones R (1965) Oxygen tension within the rabbit fallopian tube. J Reprod Fertil 9:99–102

    Article  PubMed  Google Scholar 

  • Mastroianni L, Urzua M, Stambaugh R (1970) Protein patterns of monkey oviductal fluid before and after ovulation. Fertil Steril 21:817–820

    PubMed  CAS  Google Scholar 

  • Mastroianni L, Urzua M, Stambaugh R (1973) The internal environmental fluids of the oviduct. In: Segal SJ, Crozier R, Corfman PA, Condliffe PG (eds) The regulation of mammalian reproduction. Thomas, Springfeld, pp 376–384

    Google Scholar 

  • Nieder CD, Weitlauf HM, Suda-Hartman M (1987) Studies of stage specific proteins by peri-implantation mouse embryos. Biol Reprod 36:687–699

    Article  PubMed  CAS  Google Scholar 

  • Oliphant G (1986) Biochemistry and immunology of oviduct fluid. In: Siegler AM (ed) the fallopian tube: Basic studies and clinical contributions. Future, Mount Kisco, New York, pp 129–145

    Google Scholar 

  • Overstreet JW, Katz DF (1977) Sperm transport and selection in female genital tract. In Johnson MH (ed) Development in mammals, vol 2. Elsevier, Amsterdam, pp 31–65

    Google Scholar 

  • Patek K, Nilsson L, Johanisson E (1972a) Scanning electron microscopic study of the human fallopian tube. I. The proliferative and secretory stages. Fertil Steril 23:459–465

    Google Scholar 

  • Patek E, Nilsson L, Johannisson E (1972b) Scanning electron microscopic study of the human fallopian tube. II. Fetal life, reproductive life and menopause. Fertil Steril 23:719–733

    PubMed  CAS  Google Scholar 

  • Pauerstein CJ (1975) Clincial implications of oviducatal physiology and biochemistry. Gynecol Invest 6:253–264

    Article  PubMed  CAS  Google Scholar 

  • Pauerstein CJ, Eddy CA (1979a) The role of the oviduct in reproduction: our knowledge and our ignorance. J Reprod Fertil 55:223–229

    Article  PubMed  CAS  Google Scholar 

  • Pauerstein CJ, Eddy CA (1979b) Morphology of the Fallopian tube. In: Beller FK, Schumacher GFB (eds) The biology of the fluids of the female genital tract. Elsevier, North-Holland, pp 299–317

    Google Scholar 

  • Pino AM, Devoto L, Soto E, Castro O, Sierralta W (1982) Changes in cytosolic and nuclear estradiol receptors of normal fallopian tube throughout the menstrual cycle. J Steroid Biochem 16:193–197

    Article  PubMed  CAS  Google Scholar 

  • Pockley AG, Mowles EA, Stocker RJ, Westwood Om, Chapman MG, Bolton AE (1988) Suppression of in vitro lymphocyte reactivity to phytohemagglutinin by placental protein 14. J Reprod Immunol 13:31–39

    Article  PubMed  CAS  Google Scholar 

  • Pollow K, Intraphuvasak J, Manz B, Grill HJ (1981) A comparison of cytoplasmic and nuclear estradiol and progesterone receptors in human fallopian tube and endometrial tissue. Fertil Steril 36:66–69

    Google Scholar 

  • Pollow K, Intraphuvasak J, Grill HJ, Manz B (1982) Estradiol and progesterone binding components in the cytosol of normal human fallopian tubes. J Steroid Biochem 16:429–435

    Article  PubMed  CAS  Google Scholar 

  • Punnonen R, Lukola A (1981) Binding of estrogen and progestin in the human fallopian tube. Fertil Steril 36:610–614

    PubMed  CAS  Google Scholar 

  • Riddick DH (1975) The composition of rabbit oviductal fluid collected continuously through the gestation. J Reprod Fertil 43:563–566

    Article  PubMed  CAS  Google Scholar 

  • Robertson DM, Landgren BM 81975) Oestradiol receptor level in the human Fallopian tube during the menstrual cycle and after the menopause. J Steroid Biochem 6:511–513

    Google Scholar 

  • Seckinger DL, Snyder FF (1926) Cyclic changes in the spontaneous contractions of the human Fallopian tube. Bull Johns Hopkins Hosp 39:371–378

    Google Scholar 

  • Shams A, Rizk MA, Toppozada HK, Khowessah MM, Abul-Enin M, Said S, Habib YA, Kira LH (1977) Human tubal fluid collection via vagina and its quantitative variations during the menstrual cycle. J Reprod Med 18:61–65

    PubMed  CAS  Google Scholar 

  • Sjöberg J, Wahlström T, Grudzinskas JG, Sinosich MJ (1986) Demonstration of pregnancy-associated plasma protein-A (PAPP-A)-like material in the fallopian tube. Fertil Steril 45:517–521

    PubMed  Google Scholar 

  • Soriero AA (1978) The ageing uterus and fallopian tubes. In: Schneider EL (ed) The geing reproductive system. Raven, New York, pp 85–126

    Google Scholar 

  • Stegner HE (1961) Das Epithel der Tuba Uterina des Neugeboren. Electronenmikroscopishe Befunde. Z Zellforsch 55:247–262

    Article  PubMed  CAS  Google Scholar 

  • Talo A, Pulkkinen MO (1982) Electrical activity in the human oviduct during the menstrual cycle. Am J Obstet Gynecol 142:35–147

    Google Scholar 

  • Talo A, Pulkkinen MO (1984) Electrical activity in the human oviduct after the menopause. Maturitas 5:185–191

    Article  PubMed  CAS  Google Scholar 

  • Thibault C (1973) Sperm transport and storage in vertebrates. J Reprod Fertil [Suppl] 18:39–53

    CAS  Google Scholar 

  • Tiitinen A, Wahlsrtröm T, Julkunen M, Seppälä M (1986) The content and immunohistochemical localisation of placental protein 10 (PP10) in the fallopian tube. Br J Obstet Gynaecol 93:924–927

    Article  PubMed  CAS  Google Scholar 

  • Verhage HG, Barehter ML, Jaffe RC, Akbar M (1979) Cyclic changes in ciliation, secretion and cell height of the oviductal epithelium in women. Am J Anat 156:505–521

    Article  PubMed  CAS  Google Scholar 

  • Voet RL (1983) End organ response to oestrogen deprivation. In: Buchsbaum HJ (ed) The menopause. Springer, Berlin Heidelberg New York, pp 9–22

    Google Scholar 

  • Voinot JBM (1900) Essai sur l’epithelium de la trompe de la fallope chez la femme. Thesis, Nancy

    Google Scholar 

  • Waites GT, Bell SC, Walker RA, Wood PL (1990) Immuno-histological distribution of the secretory endometrial protein endometrial a 2-globulin, a glycosylated β-lacto-globulin homologue, in the human fetus and adult employing monoclonal antibodies. Hum Reprod 5:105–111

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saridogan, E., Maguiness, S.D., Djahanbakhch, O. (1996). Fallopian Tube Physiology and Its Clinical Implications. In: Broer, K.H., Turanli, I. (eds) New Trends in Reproductive Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60961-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60961-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64630-0

  • Online ISBN: 978-3-642-60961-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics