Skip to main content

Biologische Behandlung von Metallen und Radionukliden

  • Chapter
Umweltverschmutzung

Zusammenfassung

Lebende Organismen benötigen bestimmte Elemente für ihr Wachstum und zur Aufrechterhaltung ihrer physikalischen Struktur, der Stoffwechselaktivitäten und der Fortpflanzungsfähigkeit. Sie haben geeignete Mechanismen zur Aufnahme der für den Stoffwechsel wesentlichen Elemente ausgebildet. Bei bestimmten Gelegenheiten können toxische Metalle aufgenommen werden, die zu physiologischem Schaden für den Organismus und sogar zu seinem Tod führen können. Selbst die in geringen Mengen oder Spuren für die normalen Zellfunktionen benötigten Metallelemente können behindernde oder toxische Auswirkungen zeigen, wenn sie in übermäßiger Konzentration vorhanden sind (Kap. 13). Viele Organismen haben Entgiftungsmechanismen entwickelt, um den schädlichen Auswirkungen der Metalle zu entgehen. Bei Mikroorganismen haben sich dafür verschiedene Resistenzmechanismen herausgebildet, darunter z. B. Umbildungen der toxischen Metalle, die dazu führen, daß das Metall in einer anderen physikalischen und/oder chemischen Form freigesetzt wird, wie dies bei einer Metallalkylierung stattfindet. Einige der von Organismen katalysierten Verfahren zur Aufnahme und Umbildung von Metallen können auch zur Behandlung metallhaltiger Abfälle eingesetzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • AIKING, H.; HOK, K.; VAN HEERIKHUIZEN, H.; VAN TRIET, J. (1982): Adaptation to cadmium by Klebsiella aerogenes growing in continuous culture proceeds mainly via the formation of cadmium sulfide. Appl. Environ, Microbiol., 44, 938–944.

    CAS  Google Scholar 

  • ASHLEY, N. V.; ROACH, D. J. (1990): Review of biotechnology applications to nuclear waste treatment. J. Chem. Technol. Bioteehnol., 49, 381–394.

    Article  CAS  Google Scholar 

  • BEVERIDGE, T. J. (1978): The response of cell walls of Bacillus subtilis to metal and to electron microscopic stains. Can. J. Microbiol., 24, 89–104.

    Article  CAS  Google Scholar 

  • BONOTTO, S.; GERBER, C. T.; GARTER JR.; VANDECASTEELE, C. M.; MYTTENAERE, C.; VAN BAELEN, J.; COGNEAU, M.; VAN DER BEN, D. (1984): Uptake and distribution of technetium in several Trarine algae. In: References 287 Cigna, A.; Myttenaere, C. (eds.): Int. Symp. Behav. Long-lived Radionuclides Marine Environ., pp. 138–396. CEC, Brussels.

    Google Scholar 

  • BRIERLEY, C. L. (1978): Bacterial leaching. CRC Crit. Rev. Microbiol., 6, 207–262

    Article  CAS  Google Scholar 

  • BRIERLEY, C. L.; BRIERLEY, J. A.; DAVIDSON, M. S. (1989): Applied microbial processes for metals recovery and removal from wastewater. In: Beveridge, F. G.; Doyle, R. J. (eds.):, Metal Ions and Bacteria, pp. 359–382. John Wiley and Sons, New York.

    Google Scholar 

  • BRIERLEY, R. A.; GOYAK, G. M.; BRIERLEY, C. L. (1986): Considerations for commercial use of natural products for metal recovery. In: Eccles, H.; Hunt, S. (eds.): Immobilisation of Ions by Biosorption, pp. 105–117. Ellis Horwood, Chichester.

    Google Scholar 

  • BUTT, T. R.; ECKER, D. J. (1987): Yeast metallothionein and applications in biotechnology. Microbiol. Rev., 51, 351–364.

    CAS  Google Scholar 

  • DARNALL, D. W.; GREENE, B.; HENZL, M. T.; HOSEA, J. M.; McPHERSON, R. A.; SNEDDON, J.; ALEXANDER, M. D. (1986): Selective recovery of gold and other metal ions from an algal biornass. Environ. Sci. Technol., 20, 206–208.

    Article  CAS  Google Scholar 

  • DORAN, J. W. (1982): Microorganisms and the biological cycling of selenium. Adv. Microbial Ecol., 6, 1–32.

    CAS  Google Scholar 

  • FERRIS, F. G.; SHOTYK, W.; FYFE, W. S. (1989): Mineral formation and decomposition by microorganisms. In: Beveridge, T. J.; Doyle, R. J. (eds.): Metal Ions and Bacteria. John Wiley and Sons, New York.

    Google Scholar 

  • GADD, G. M. (1992): Microbial control of heavy metal pollution. In: Fry, J. C.; Gadd, G. M.; Herber, R. A.; Jones, C. W.; Watson-Craik, I. A. (eds.): Microbial Control of Pollution, pp. 59–88. Cambridge University Press, Cambridge.

    Google Scholar 

  • GALUN, M.; KELLER, P.; MALKI, D.; FELDSTEIN, H.; GALUN, E.; SIEGEL, S.; SIEGEL, B. (1984) Removal of uranium (VI) from solution by fungal biomass: inhibition by iron. Water Air Soil Pollut., 21, 411–414.

    Article  CAS  Google Scholar 

  • GHIORSE, W. C. (1984): Biology of iron-depositing and manganese-depositing bacteria. Ann. Rev. MicrobioL, 38,515–550.

    Article  CAS  Google Scholar 

  • HUGHES, M. N.; POOLE, R. K. (1989a): Metals and Microorganisms, pp. 303–358. ChapMan & Hall, London.

    Google Scholar 

  • HUGHES, M. N.; POOLE, R, K. (1989b): Metal mimicry and metal limitation in studies of metal-microbe interactions. In: Poole, R. K.; Gadd, G. M. (eds.): Metal-Microbe Interactions, pp. 1–17. IRL Press, Oxford.

    Google Scholar 

  • HUNT, S. (1986): Diversity of biopolymer structure and its Potential for ion binding applications. In: Eccles, H.; Hunt, S. (eds.): Immobilaation of Ions by Biosorption, pp. 15–46. Elfis Horwood Ltd, Chichester.

    Google Scholar 

  • LEVI, P.; LINKLEFRER, A. (1989): Metals, microorganisms and biotechnology. In: Hughes, M. N.; Poole, R. K. (eds.): Metal and Microorganisms, pp. 303–358. Chapman and Hall London.

    Google Scholar 

  • LEWIS, D.; KIFF, R. J. (1988): The removal of heavy metals from aqueous effluents by immobilized fungal biomass. Environ. Technol. Lett., 9, 991–998.

    Article  CAS  Google Scholar 

  • MACASKIE, L. E. (1990): An immobilized cell bioprocess for the removal of heavy metals from aqueous flows. J. Chem. Technol. Biotechnol., 49, 357–381.

    Article  CAS  Google Scholar 

  • MACASKIE, L. E.; DEAN, A. C. R. (1990): Metal-sequestering biochemicals. In Volesky, B. (ed.): Biosorption of Heavy Metals, pp. 199–248. CRC Press, Boca Raton.

    Google Scholar 

  • MCELDOWNEY, S. (1990): Microbial biosorption of radionuclides in liquid effluent treatment. Appl. Biochem. Biotechnol., 26, 159–180.

    Article  CAS  Google Scholar 

  • MERGEAY, M. (1991): Towards an understanding of bacterial metal resistance. TIBTECH., 9, 17–24.

    CAS  Google Scholar 

  • NEALSON, K. H.; ROSSON, R. A.; MYERS, C. R. (1989): Mechanisms of oxidation and reduction of manganese. In: Beveridge, F. G.; Doyle, R. J. (eds.): Metal Ions and Bacteria, pp. 383–412. Wiley.

    Google Scholar 

  • NORRIS, P. R. (1989): Mineral oxidising bacteria: metal-organism interactions. In: Poole, R. K.; Gadd, G. M. (eds.): Metal-Microbe Interactions, pp. 99–117. IRL Press, Oxford.

    Google Scholar 

  • ONSOYEN, E.; SKAUGRUD, O. (1990): Metal recovery using chitosan. J. Chem. Technol. Biotechnol., 49, 395–404.

    Article  CAS  Google Scholar 

  • OREMLAND, R. S.; HOLLIBAUGH, J. T.; MAEST, A. S.; PRESSEC, T. S.; MILLER, L. G.; CULBERTSON, C. O. (1989): Selenate reduction to elementar selenium by anaerobic bacteria in Bedient and culture: biogeochemical significance of a novel sulphate independent respiration. Appl. Environ. Microbiol., 55, 2333–2343.

    CAS  Google Scholar 

  • TOBEST, J. M.; COOPER, D. G.; NEUFELD, R. J. (1984): Uptake of metal ions by Rhizopus arrhizus biomass. Appl. Environ. Microbiol., 47, 821–824.

    Google Scholar 

  • TSEZOS, M.; VOLESKY, B. (1982): The mechanisms of uranium biosorption by Rhizopus arrhizus. Biotechnol. Bioeng., 24, 385–401.

    Article  CAS  Google Scholar 

  • VOLESKY, B. (1987): Biosorbents in metal recovery. Trends Biotechnol., 5, 95–101.

    Article  Google Scholar 

  • YAKUBU, N. A.; DUDENEY, A. W. L. (1986): Biosorption of uranium with Aspergillus niger. In Eccles, H.; Hunt, S. (eds.): Immobilization of Ions by Biosorption, pp. 183–200. Ellis Horwood Ltd, Chichester.

    Google Scholar 

Weiterführende Literatur

  • BEVERIDGE, T. J.; DOYLE, R. J. (1989): Metal Ions and Bacteria. John Wiley and Sons, New York.

    Google Scholar 

  • GADD, G. M. (1992): Microbial control of heavy metal pollution. In: Fry, J. C.; Gadd, G. M.; Herbert, R. A.; Jones, C. W.; Watson-Craik, I. A. (eds.). Microbial Control of Pollution, pp. 59–88. Cambridge University Press, Cambridge.

    Google Scholar 

  • HUGHES, M. N.; POOLE, R. K. (1989): Metals and Microorganisms. Chapman and Halt, London.

    Google Scholar 

  • HUTCHENS, S. R.; DAVIDSON, M. S.; BRIERLEY, J. A.; BRIERLEY, C. L. (1985): Microorganisms in reclamation of metals. Ann. Rev. Microbiol., 40, 311–336.

    Article  Google Scholar 

  • POOLE, R. K.; GADD, G. M. (eds.)(1989): Metal-Microbe Interactions. Special Publication, Society for General Microbiology, Vol.26. IRL Press, Oxford. (1990): Papers from the meeting Recovery/removal of metals by biosorption — a chemical reality or a scientist’s dream? J. Chem. Technol. Biotechnol., 49, 329–404.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hardman, D., McEldowney, S., Waite, S. (1996). Biologische Behandlung von Metallen und Radionukliden. In: Umweltverschmutzung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60953-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60953-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64624-9

  • Online ISBN: 978-3-642-60953-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics