Skip to main content

Cellular Transduction Processes

  • Chapter
Comprehensive Human Physiology

Abstract

A variety of transduction mechanisms are present in every cell. The messages of many hormones and locally produced autacoids (i.e., substances which act like hormones at their site of production and release) induce cell responses. To transmit these signals within the cell, hormone receptors and a variety of transduction systems are commonly used by almost every cell. The components of these systems will be briefly summarized in this chapter. The various types of receptors will only be covered briefly. This area is covered more fully in other chapters and in pharmacology texts [15,26,37,39,47,57,65,67,81,84,89,98,103]. The key issues to be discussed here will be the various second messenger systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlner J, Andersson RGG, Torfgard K, Axelsson KL (1991) Organic nitrate esters: clinical use and mechanisms of action. Pharmacol Rev 43:351–413

    PubMed  CAS  Google Scholar 

  2. Allen TJA, Noble D, Reuter H (1989) Sodium-calcium exchange. Oxford University Press, London

    Google Scholar 

  3. Aridor M, Rajmilevich G, Beaven MA, Sagi-Eisenberg R (1993) Activation of exocytosis by the heterotrimeric G protein G13. Science 262:1569–1572

    PubMed  CAS  Google Scholar 

  4. Avissar S, Schreiber G, Danon A, Belmaker RH (1988) Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature 331:440–442

    PubMed  CAS  Google Scholar 

  5. Babu YS, Sack J, Greenhough T, Bugg C, Means A, Cook W (1985) Three-dimensional structure of calmodulin. Nature 315:37–40

    PubMed  CAS  Google Scholar 

  6. Balke CW, Wier WG (1992) Modulation of l-type calcium channels by sodium ions. Proc Natl Acad Sci USA 89: 4417–4421

    PubMed  CAS  Google Scholar 

  7. Ballermann BJ, Zeidel M (1992) Atrial natriuretic hormone. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology. Raven, New York, pp 1843–1884

    Google Scholar 

  8. Bean BP (1989) Classes of calcium channels in vertebrate cells. Annu Rev Physiol 51:367–384

    PubMed  CAS  Google Scholar 

  9. Berridge MJ (1993) Inositol triphosphate and calcium signalling. Nature 361:315–325

    PubMed  CAS  Google Scholar 

  10. Berridge MJ (1994) The biology and medicine of calcium signalling. Mol Cell Endocrinol 98:119–124

    PubMed  CAS  Google Scholar 

  11. Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341:197–205

    PubMed  CAS  Google Scholar 

  12. Birnbaumer L, Codina J, Mattera R, Yatani A, Scherer N, Toro MJ, Brown AM (1987) Signal transduction by G proteins. Kidney Int 32:S14-S37

    Google Scholar 

  13. Boguski MS, McCormick F (1993) Proteins regulating Ras and its relatives. Nature 366:643–654

    PubMed  CAS  Google Scholar 

  14. Bourne HR (1989) Who carries the message? Nature 337: 504–505

    PubMed  CAS  Google Scholar 

  15. Brodde OE (1991) β1 and β2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 43:203–242

    PubMed  CAS  Google Scholar 

  16. Brown AM (1991) Ion channels as G protein effectors. NIPS 6:158–161

    CAS  Google Scholar 

  17. Carafoli E (1991) The calcium pumping ATPase of the plasma membrane. Annu Rev Physiol 53:531–547

    PubMed  CAS  Google Scholar 

  18. Casey PJ, Gilman AG (1988) G-protein involvement in receptor-effector coupling. J Biol Chem 263:2577–2580

    PubMed  CAS  Google Scholar 

  19. Cheng HC, Kemp BE, Pearson RB, Smith AJ, Misconi L, Van Patten SM, Walsh DA (1986) A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase. J Biol Chem 261:989–992

    PubMed  CAS  Google Scholar 

  20. Cheung WY (1982) Calmodulin. Sci Am 246:48–56

    Google Scholar 

  21. Cogan MG (1990) Renal effects of atrial natriuretic factor. Annu Rev Physiol 52:699–708

    PubMed  CAS  Google Scholar 

  22. Cohen P, Holmes CFB, Tsukitani Y (1990) Okadaic acid: a new probe for the study of cellular regulation. TIPS 15:98

    CAS  Google Scholar 

  23. Cox JA (1984) Sequential events in calmodulin on binding with calcium and interaction with target enzymes. Fed Proc 43:3000–3004

    PubMed  CAS  Google Scholar 

  24. De Jonge HR (1984) The mechanism of action of Escherichia coli heat-stable toxin. Biochem Soc Trans 12:180–184

    PubMed  Google Scholar 

  25. Downes CP (1988) Inositol phosphates: a family of signal molecules? Trends Neurosci 11:336–338

    PubMed  CAS  Google Scholar 

  26. Dubyak GR, El-Moatassim C (1993) Signal transduction via P2-purinergic receptors from extracellular ATP and other nucleotides. Am J Physiol 265:C577-C606

    PubMed  CAS  Google Scholar 

  27. Dupont G, Goldbeter A (1993) One-pool model for Ca2+ oscillations involving Ca2+ and inositol- 1,4,5-trisphosphate as co-agonists for Ca2+ release. Cell Calcium 14:311–322

    PubMed  CAS  Google Scholar 

  28. Fewtrell C (1993) Ca2+ oscillations in non-excitable cells. Annu Rev Physiol 55:427–454

    PubMed  CAS  Google Scholar 

  29. Findlay JBC, Donnelly D, Bhogal N, Hurrell C, Attwood TK (1993) Signalling from the plasma membrane to the nucleus. Biochem Soc Trans 21:869–873

    PubMed  CAS  Google Scholar 

  30. Finney RE, Robbins SM, Bishop JM (1993) Association of pRas and pRaf-1 in a complex correlates with activation of a signal transduction pathway. Curr Biol 3:805–812

    PubMed  CAS  Google Scholar 

  31. Freissmuth M, Casey PJ, Gilman AG (1989) G proteins control diverse pathways of transmembrane signalling. FASEB J 3:2125–2131

    PubMed  CAS  Google Scholar 

  32. Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K (1989) Primary structure and functional expression of the inositol-1,4,5-trisphosphate-binding protein P400. Nature 342:32–38

    PubMed  CAS  Google Scholar 

  33. Galione A (1994) Cyclic ADP-ribose, the ADP-ribosyl pathway and calcium signalling. Mol Cell Endocrinol 98:125–131

    PubMed  CAS  Google Scholar 

  34. Garbers DL (1989) Guanylate cyclase, a cell surface receptor. J Biol Chem 264:9103–9106

    PubMed  CAS  Google Scholar 

  35. Garcia-Sainz JA (1991) Cell responsiveness and protein kinase C: receptors, G proteins, and membrane effectors. NIPS 6:169–173

    CAS  Google Scholar 

  36. Györke S, Fill M (1993) Ryanodine receptor adaptation: control mechanism of Ca2+ induced Ca2+ release. Science 260:807–809

    PubMed  Google Scholar 

  37. Hammer R, Giachetti A (1982) Muscarinic receptor subtypes: M1 and M2, biochemical and functional characterization. Life Sci 31:2991–2998

    PubMed  CAS  Google Scholar 

  38. Hamra FK, Forte LR, Eber SL, Pidhorodeckyj NV, Krause WJ, Freeman RH, Chin DT, Tompkins JA, Fok KF, Smith CE, Duffin KL, Siegel NR, Currie MG (1993) Uroguanylin: structure and activity of a second endogenous peptide that stimulates intestinal guanylate cyclase. Proc Natl Acad Sci USA 90:10464–10468

    PubMed  CAS  Google Scholar 

  39. Hill S (1990) Distribution, properties, and functional characteristics of three classes of histamine receptor. Pharmacol Rev 42:45–83

    PubMed  CAS  Google Scholar 

  40. Hille B (1984) Ionic channels of excitable membranes. Sinauer, Sunderland, Mass

    Google Scholar 

  41. Hosey MM, Lazdunski M (1988) Calcium channels: molecular pharmacology, structure and regulation. J Membr Biol 104:81–105

    PubMed  CAS  Google Scholar 

  42. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–355

    PubMed  CAS  Google Scholar 

  43. Huganir RL, Greengard P (1987) Regulation of receptor function by protein phosphorylation. TIPS 8:472–477

    CAS  Google Scholar 

  44. Kasai H, Augustine GJ (1990) Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature 348:735–738

    PubMed  CAS  Google Scholar 

  45. Kaupp B (1991) The cyclic nucleotide-gated channels of vertebrate photoreceptors and olfactory epithelium. Trends Neurosci 14:150–157

    PubMed  CAS  Google Scholar 

  46. Kaupp UB, Niidome T, Tanabe T, Terada S, Bönigk W, Stühmer W, Cook NJ, Kangawa K, Matsuo H, Hirose T, Miyata T, Numa S (1989) Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342:762–766

    PubMed  CAS  Google Scholar 

  47. Kenakin TP, Bond RA, Bonner TI (1992) II. Definition of pharmacological receptors. Pharmacol Rev 44:351–362

    PubMed  CAS  Google Scholar 

  48. Kikkawa U, Kishimoto A, Nishizuka Y (1989) The protein kinase C family: heterogeneity and its implications. Annu Rev Physiol 58:31–44

    CAS  Google Scholar 

  49. Klär B, Leipziger J, Nitschke R, Greger R (1993) Ca2+ as a second messenger in CFPAC-1 cells. Cell Physiol Biochem 3:17–27

    Google Scholar 

  50. Klee CB, Crough TH, Richman PG (1980) Calmodulin. Annu Rev Biochem 49:489–515

    PubMed  CAS  Google Scholar 

  51. Konkel DA (1988) What do ras oncogenes do? Mol Endocrinol 2:883–885

    PubMed  CAS  Google Scholar 

  52. Lang F, Friedrich F, Kahn E, Wöll E, Hammerer M, Waldegger S, Maly K, Grunicke H (1991) Bradykinin-induced oscillations of cell membrane potential in cells expressing the Ha-ras oncogene. J Biol Chem 266:4938–4942

    PubMed  CAS  Google Scholar 

  53. Laurenza A, McHugh Sutkowski E, Seamon KB (1989) Forskolin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action. TIPS 10:442–447

    PubMed  CAS  Google Scholar 

  54. Lee HC, Walseth TF, Bratt GT, Hayes RN, Clapper DL (1989) Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+ mobilizing activity. J Biol Chem 264:1608–1615

    PubMed  CAS  Google Scholar 

  55. Leipziger J, Fischer KG, Greger R (1994) Voltage dependent Ca2+ influx in the epithelial cell line HT29: simultaneous use of intracellular Ca2+ measurements and nystatin perforated patch-clamp. Pflugers Arch 426:427–432

    PubMed  CAS  Google Scholar 

  56. Leipziger J, Nitschke R, Greger R (1991) Transmitter-induced changes in cytosolic Ca2+ activity in HT29 cells. Cell Physiol Biochem 1:273–285

    CAS  Google Scholar 

  57. Levitzki A (1986) β-adrenergic receptors and their mode of coupling to adenylate cyclase. Physiol Rev 66:819–854

    PubMed  CAS  Google Scholar 

  58. Lückhoff A, Clapham DE (1992) Inositol-1,3,4,5-tetrakisphosphate activates an endothelial Ca2+-permeable channel. Nature 355:356–358

    PubMed  Google Scholar 

  59. Macara IG (1989) Oncogenes and cellular signal transduction. Physiol Rev 69:797–820

    PubMed  CAS  Google Scholar 

  60. Majerus PW, Ross TS, Cunningham TW, Caldwell KK, Jefferson AB, Bansal VS (1990) Recent insights in phosphatidylinositol signalling. Cell 63:459–465

    PubMed  CAS  Google Scholar 

  61. Martonosi A (1992) The Ca2+ transport ATPases of sarco(endo)-plasmic reticulum and plasma membranes. In: De Pont HHJJM (ed) Molecular aspects of transport proteins. Elsevier, Amsterdam, pp 57–116

    Google Scholar 

  62. Maruyama Y, Inooka G, Li YX, Miyashita Y, Kasai H (1993) Agonist-induced localized Ca2+ spikes directly triggering exocytotic secretion in exocrine pancreas. EMBO J 12: 3017–3022

    PubMed  CAS  Google Scholar 

  63. McCormick F (1993) How receptors turn Ras on. Nature 363:15–16

    PubMed  CAS  Google Scholar 

  64. Meldolesi J (1993) Keeping the stores full. Curr Biol 3:910–912

    PubMed  CAS  Google Scholar 

  65. Meng F, Xie GX, Thompson RC, Mansour A, Goldstein A, Watson SJ, Akil H (1993) Cloning and pharmacological characterization of a rat κ opioid receptor. Proc Natl Acad Sci USA 90:9954–9958

    PubMed  CAS  Google Scholar 

  66. Mitchell RH (1992) Inositol lipids in cellular signalling mechanisms. Trends Biochem Sci 17:274–276

    Google Scholar 

  67. Minnemann KP (1988) α1-Adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca2+. Pharmacol Rev 40:87–119

    Google Scholar 

  68. Moncada S, Palmer RM J, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  69. Moolenaar WH, Jalink K, van Corven EJ (1992) Lysophosphatidic acid: a bioactive phospholipid with growth factor-like properties. Rev Physiol Biochem Pharmacol 119: 48–65

    Google Scholar 

  70. Neer EJ, Clapham DE (1988) Roles of G protein subunits in transmembrane signalling. Nature 333:129–134

    PubMed  CAS  Google Scholar 

  71. Neher E (1992) Controls on calcium influx. Nature 355: 298–299

    PubMed  CAS  Google Scholar 

  72. Nishizuka Y (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334:661–665

    PubMed  CAS  Google Scholar 

  73. Nitschke R, Leipziger J, Greger R (1993) Agonist induced intracellular Ca2+ transients in HT29 cells. Pflugers Arch 423:519–526

    PubMed  CAS  Google Scholar 

  74. Parker PJ, Ullrich A (1987) Protein kinase C. J Cell Physiol 5:53–56

    Google Scholar 

  75. Petersen OH (1990) Does inositol tetrakisphosphate play a role in the receptor-mediated control of calcium mobilization? Cell Calcium 10:375–383

    Google Scholar 

  76. Petersen OH (1992) Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J Physiol (Lond) 448:1–51

    CAS  Google Scholar 

  77. Petersen OH, Wakui M (1990) Oscillating intracellular Ca2+ signals evoked by activation of receptors linked to inositol lipid hydrolysis: mechanism of generation. J Membr Biol 118:93–105

    PubMed  CAS  Google Scholar 

  78. Putney JW, Takemura H, Hughes AR, Horstman DA, Thastrup O (1989) How do inositol phosphates regulate calcium signalling? FASEB J 3:1899–1905

    PubMed  CAS  Google Scholar 

  79. Randriamampita C, Tsien RY (1993) Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364:809–814

    PubMed  CAS  Google Scholar 

  80. Rasmussen H (1989) The cycling of calcium as an intracellular messenger. Sci Am 261:44–51

    Google Scholar 

  81. Ruffolo RR, Nichols AJ, Stadel JM, Hieble JP (1991) Structure and function of α-adrenoceptors. Pharmacol Rev 43:475–505

    PubMed  CAS  Google Scholar 

  82. Ruskoaho H (1992) Atrial natriuretic peptide: synthesis, release, and metabolism. Pharmacol Rev 44:479–516

    PubMed  CAS  Google Scholar 

  83. Schatzmann HJ (1989) The calcium pump of the surface membrane and of the sarcoplasmic reticulum. Annu Rev Physiol 51:473–485

    PubMed  CAS  Google Scholar 

  84. Schimerlik MI (1989) Structure and regulation of muscarinic receptors. Annu Rev Physiol 51:217–227

    PubMed  CAS  Google Scholar 

  85. Schulz S, Chinkers M, Garbers DL (1989) The guanylate cyclase/reeeptor family of proteins. FASEB J 3:2026–2035

    PubMed  CAS  Google Scholar 

  86. Seamon KB, Padgett W, Daly JW (1981) Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci USA 78:3363–3367

    PubMed  CAS  Google Scholar 

  87. Slupsky JR, Ohnishi M, Carpenter MR, Reithmeier RAF (1987) Characterization of cardiac calsequestrin. Biochemistry 26:6539–6544

    PubMed  CAS  Google Scholar 

  88. Snyder PM, Krause KH, Welsh MJ (1988) Inositol triphosphate isomers, but not inositol-1,3,4,5-tetrakisphosphate, induce calcium influx in Xenopus laevis oocytes. J Biol Chem 263:11048–11051

    PubMed  CAS  Google Scholar 

  89. Stiles GL (1991) Adenosine receptors: physiological regulation and biochemical mechanisms. News Physiol Sci 6:161–165

    CAS  Google Scholar 

  90. Stockt JC, Gérard D, Kilhoffer MC, Lugenier C, Miller R, Schaeffer P (1987) Calmodulin and its role in intracellular calcium regulation. Prog Neurobiol 29:321–364

    Google Scholar 

  91. Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-triphosphate. Nature 306:67–69

    PubMed  CAS  Google Scholar 

  92. Sutherland EW (1992) Studies on the mechanism of hormone action. In: Lindstein J (ed) Nobel lectures in physiology and medicine. Nobel Foundation, World Scientific, Singapore, pp 5–23

    Google Scholar 

  93. Tepikin AV, Voronina SG, Gallacher DV, Petersen OH (1992) Acetyl-choline-evoked increase in cytoplasmic Ca2+ concentration and Ca2+ extrusion measured simultaneously in single mouse pancreatic acinar cells. J Biol Chem 267: 3569–3572

    PubMed  CAS  Google Scholar 

  94. Trautwein W, Hescheler J (1990) Regulation of cardiac l-type calcium current by phosphorylation and G-proteins. Annu Rev Physiol 52:257–274

    PubMed  CAS  Google Scholar 

  95. Tsien RY (1992) Intracellular signal transduction in four dimensions: from molecular design to physiology. Am J Physiol 263:C723-C278

    PubMed  CAS  Google Scholar 

  96. Ueda N, Tang WJ (1993) Conditional regulation of adenylyl cyclases by G-protein β-γ-subunits. Biochem Soc Trans 21:1132–1138

    PubMed  CAS  Google Scholar 

  97. Waldman SA, Murad F (1987) Cyclic GMP synthesis and function. Pharmacol Rev 39:163–196

    PubMed  CAS  Google Scholar 

  98. Walker JM, Bowen WD, Walker FO, Matsumoto RR, De Costa B, Rice K (1990) Sigma receptors: biology and function. Pharmacol Rev 42:355–402

    PubMed  CAS  Google Scholar 

  99. Weiss ER, Kelleher DJ, Woon CW, Soparkar S, Osawa S, Heasley LE, Johnson GL (1988) Receptor activation of G-proteins. FASEB J 2:2841–2848

    PubMed  CAS  Google Scholar 

  100. Wolff T, Leipziger J, Fischer KG, Klär B, Nitschke R, Greger R (1993) Evidence for Ca2+ induced export in epithelial cells. Pflugers Arch 424:423–430

    PubMed  CAS  Google Scholar 

  101. Worrell RT, Frizzell RA (1991) CaMKII mediates stimulation of chloride conductance by calcium in T84 cells. Am J Physiol 260:C877-C882

    PubMed  CAS  Google Scholar 

  102. Zeidel ML (1990) Renal actions of atrial natriuretic peptide: regulation of collecting duct sodium and water transport. Annu Rev Physiol 52:747–759

    PubMed  CAS  Google Scholar 

  103. Zifa E, Fillion G (1992) 5-Hydroxytryptamine receptors. Pharmacol Rev 44:401–458

    PubMed  CAS  Google Scholar 

  104. Exton JH (1994) Phosphoinositide phospholipases and G protein in hormone action. Annu Rev Physiol 56:349–369

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greger, R. (1996). Cellular Transduction Processes. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics