Skip to main content

Physiology of Skeletal Muscle

  • Chapter

Abstract

Motility is a widespread biological phenomenon that reaches its highest manifestation in the specialized tissue of muscle. Its particular function is vital to animal life, though it also serves vegetative functions as well. Animal functions are based upon the property of excitability and its conduction, as already described for nerve cells and their filamentous extensions (see Chaps. 13, 14). Skeletal and heart muscles are also excitable, but their stimulation is intimately linked to a secondary response, that of contraction. Thus, skeletal muscle is the major executive arm of the nervous system, primarily in regard to motor activity. However, muscle is also the means of expression of higher functions of the brain, of which we would have no knowledge if they were not communicated by muscles, which express our “mental” activities by speech, song, and cries, by writing, by gestures and facial expressions, and by more complex forms of behavior, both sessile or locomotory, individual or social.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1989) Molecular biology of the cell 2nd edn. Garland, New York

    Google Scholar 

  2. Alexander RMcN (1981) Mechanics of skeleton and tendons. In: Brooks VB (ed) The nervous system. American Physiological Society, Bethesda, pp 17–42 (Handbook of physiology, vol II, part 1)

    Google Scholar 

  3. Andreassen S, Rosenfalck A (1980) Regulation of the firing pattern of single motor units. J Neurophysiol Neurosurg Psychiatry 43:897–906

    Article  CAS  Google Scholar 

  4. Aubert X, Lebacq J (1971) The heat of shortening during the plateau of tetanic contraction and at the end of relaxation. J Physiol (Lond) 216:181–200

    PubMed  CAS  Google Scholar 

  5. Bárány M, Bárány K (1977) Phosphorylation of the 18000-dalton light chain of myosin during a single tetanus of frog muscle. J Biochem 252:4752–4754

    Google Scholar 

  6. Bárány M, Bárány K, Gilles JM, Kushmerick MJ (1979) Phoshorylation-dephosphorylation of the 18000-dalton light chain of mysosin during the contraction-relaxation cycle of frog muscle. J Biochem 254:3617–3623

    Google Scholar 

  7. Bawa P, Calancie B (1983) Repetitive doublets in human flexor carpi radialis muscle. J Physiol (Lond) 339:123–132

    PubMed  CAS  Google Scholar 

  8. Bigland-Ritchie B (1984) Muscle fatigue and the influence of changing neural drive. Clin Chest Med 5:21–34

    PubMed  CAS  Google Scholar 

  9. Bigland-Ritchie BR (1993) Regulation of motorneuron firing rates in fatigue. In: Sargeant AJ, Kernell D (eds) Neuromuscular fatigue. Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp 147–155

    Google Scholar 

  10. Bigland-Ritchie B, Woods JJ (1984) Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 7:691–699

    Article  PubMed  CAS  Google Scholar 

  11. Binder-Macleod SA, Barker CB (1991) Use of a catch-like property of human skeletal muscle to reduce fatigue. Muscle Nerve 14:850–857

    Article  PubMed  CAS  Google Scholar 

  12. Binder-Macleod SA, Clamann HP (1989) Force output of cat motor units stimulated with trains of linearly varying frequency. J Neurophysiol 61:208–217

    PubMed  CAS  Google Scholar 

  13. Binder-Macleod SA, Landis LJ (1994) Effects of train frequency and fatigue state on the catchlike property in the rat gastrocnemius muscle. Soc Neurosci Abstr 20:1204

    Google Scholar 

  14. Bleichert A (1962) Allgemeine Muskelphysiologie. In: Rosemann H-U (ed) Lehrbuch der Physiologie des Menschen. Urban and Schwarzenberg, Munich, pp 473–497

    Google Scholar 

  15. Booth FW, Thomason DB (1991) Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol Rev 71:541–585

    PubMed  CAS  Google Scholar 

  16. Burke RE (1981) Motor units: anatomy, physiology, and functional organization. In: Brooks VB (ed) The nervous system. American Physiological Society, Bethesda, pp 354–422 (Handbook of physiology, vol II, part 1)

    Google Scholar 

  17. Burke RE, Rudomin P, Zajac FE III (1970) Catch property in single mammalian motor units. Science 168:122–124

    Article  PubMed  CAS  Google Scholar 

  18. Burke RE, Rudomin P, Zajac FE III (1976) The effect of activation history on tension production by individual muscle units. Brain Res 109:515–529

    Article  PubMed  CAS  Google Scholar 

  19. Cain DF, Infante AA, Davies RE (1962) Chemistry of muscle contraction. Adenosine triphosphate and phosphorylcreatine as energy supplies for single contractions of working muscle. Nature 196:214–217

    Article  PubMed  CAS  Google Scholar 

  20. Clamann HP (1990) Changes that occur in motor units during activity. In: Binder MD, Mendell LM (eds) The segmental motor system. Oxford University Press, New York, pp 239–257

    Google Scholar 

  21. Clamann HP, Schelhorn TB (1988) Nonlinear force addition of newly recruited motor units in the cat hindlimb. Muscle Nerve 11:1079–1089

    Article  PubMed  CAS  Google Scholar 

  22. Close R (1964) Dynamic properties of fast and slow skeletal muscles of the rat during development. J Physiol (Lond) 173:74–95

    PubMed  CAS  Google Scholar 

  23. De Luca CJ (1993) Spectral compression of the EMG signal as an index of muscle fatigue. In: Sargeant AJ, Kernell (eds) Neuromuscular fatigue. Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp 44–51

    Google Scholar 

  24. Demiéville HN, Partridge LD (1980) Probability of peripheral interaction between motor units and implications for motor control. Am J Physiol 238 (Regulatory Integrative Comp Physiol 7):R119-R137

    PubMed  Google Scholar 

  25. Eckert R, Randall D, Augustine G (1988) Animal physiology. Mechanisms and adaptations, 3rd edn. Freeman, Company, New York

    Google Scholar 

  26. Edman KAP, Mulieri LA, Scubon-Mulieri B (1976) Non-hyperbolic force-velocity relationship in single muscle fibres. Acta Physiol Scand 98:143–156

    Article  PubMed  CAS  Google Scholar 

  27. Edwards RHT, Wiles CM, Gohil K, Krywawych S, Jones DA (1982) Energy metabolism in human myopathy. In: Schotland DL (ed) Disorders of the motor unit. Wiley, New York, pp 715–726

    Google Scholar 

  28. Engelhardt VA, Lyubimova MN (1939) Myosine and ade-nosinetriphosphatase. Nature 144:668–669

    Article  CAS  Google Scholar 

  29. Enoka RM, Stuart DG (1992) Neurobiology of muscle fatigue. J Appl Physiol 72:1631–1648

    Article  PubMed  CAS  Google Scholar 

  30. Fenn WO (1923) A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J Physiol (Lond) 58:175–203

    PubMed  CAS  Google Scholar 

  31. Fenn WO (1924) The relation between the work performed and the energy liberated in muscular contraction. J Physiol (Lond) 58:373–395

    PubMed  CAS  Google Scholar 

  32. Fenn WO, Marsh BS (1935) Muscular force at different speeds of shortening. J Physiol (Lond) 85:277–297

    PubMed  CAS  Google Scholar 

  33. Fick A (1882) Mechanische Arbeit und Wärmeentwicklung bei der Muskeltätigkeit. Barth, Leipzig

    Google Scholar 

  34. Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74:49–94

    Article  PubMed  CAS  Google Scholar 

  35. Fitts RH, Metzger JM (1988) Mechanisms of muscular fatigue. In: Poortmans RJ (ed) medicine and sport science. Principles of exercise biochemistry, vol 27. Karger, Basel, pp 121–229

    Google Scholar 

  36. Freund H-J (1983) Motor unit and muscle activity in voluntary motor control. Physiol Rev 63:387–436

    PubMed  CAS  Google Scholar 

  37. Galvani L (1791) De viribus electricitatis in motu muscu-lari commentarius. De Bononiensi Scientiarum et Artium Instituto atque Academia Commentarii 7:363–418

    Google Scholar 

  38. Gandevia SC (1993) Central and peripheral components to human isometric muscle fatigue. In: Sargeant AJ, Kernell D (eds) Neuromuscular fatigue. Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp 156–164

    Google Scholar 

  39. Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol (Lond) 184:170–192

    PubMed  CAS  Google Scholar 

  40. Granzier HLM, Akster HA, ter Keurs HEDJ (1991) Effect of thin filament length on the force-sarcomere length relation of skeletal muscle. Am J Physiol 260:C1060-C1070

    PubMed  CAS  Google Scholar 

  41. Hanson J, Lowy J (1960) Structure and function of the contractile apparatus in the muscles of invertebrate animals. In: Bourne GH (ed) Structure and function of muscle, vol 1. Academic, New York, pp 265–335

    Google Scholar 

  42. Herzog W, ter Keurs HEDJ (1988) Force-length relation of in-vivo human rectus femoris muscles. Pflugers Arch Eur J Physiol 411:642–647

    Article  CAS  Google Scholar 

  43. Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B126:131-B195

    Google Scholar 

  44. Hill AV (1949) The abrupt transition from rest to activity in muscle. Proc R Soc Lond B 136:399–420

    Article  PubMed  CAS  Google Scholar 

  45. Hill AV (1950) The dimensions of animals and their muscular dynamics. Sci Prog Lond 38:209–230

    Google Scholar 

  46. Hill AV (1964) The effect of load on the heat of shortening of muscle. Proc R Soc Lond B 159:297–318

    Article  PubMed  CAS  Google Scholar 

  47. Hill AV, Hartree W (1920) The four phases of heat production of muscle. J Physiol (Lond) 54:84–128

    PubMed  CAS  Google Scholar 

  48. Homsher E (1987) Muscle enthalpy production and its relationship to actomyosin ATPase. Annu Rev Physiol 49:673–690

    Article  PubMed  CAS  Google Scholar 

  49. Homsher E, Rall JA (1973) Energetics of shortening muscles in twitches and tetanic contractions. I. A reinvestigation of Hill’s concept of the shortening heat. J Gen Physiol 62:663–676

    Article  PubMed  CAS  Google Scholar 

  50. Homsher E, Mommaerts WFHM, Ricchuti NV, Wallner A (1972) Activation heat, activation metabolism and tension-related heat in frog semitendinosus muscles. J Physiol (Lond) 220:601–625

    PubMed  CAS  Google Scholar 

  51. Homsher E, Mommaerts WFHM, Ricchuti NV (1973) Energetics of shortening muscles in twitches and tetanic contractions. II. Force-determined shortening heat. J Gen Physiol 62:677–692

    Article  PubMed  CAS  Google Scholar 

  52. Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction. Interference microscopy of living muscle fibres. Nature 173:971–973

    Article  PubMed  CAS  Google Scholar 

  53. Huxley HE (1963) Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol 7:281–308

    Article  PubMed  CAS  Google Scholar 

  54. Huxley HE, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpetation. Nature 173:973–976

    Article  PubMed  CAS  Google Scholar 

  55. Huxley TH (1880) The crayfish. An introduction to the study of zoology. Paul, London

    Book  Google Scholar 

  56. Jones DA (1993) How far can experiments in the laboratory explain the fatigue of athletes in the field? In: Sargeant AJ, Kernell D (eds) Neuromuscular fatigue. Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp 100–108

    Google Scholar 

  57. Josephson RK (1993) Contraction dynamics and power output of skeletal muscle. Annu Rev Physiol 55:527–546

    Article  PubMed  CAS  Google Scholar 

  58. Joyce GC, Rack PMH (1969) Isotonic lengthening and shortening movements of cat soleus muscle. J Physiol (Lond) 204:475–491

    PubMed  CAS  Google Scholar 

  59. Keynes RD, Aidley DJ (1991) Nerve and muscle, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  60. Kimura J (1989) Electrodiagnosis in diseases of nerve and muscle: principles and practice, 2nd edn. Davis, Philadelphia

    Google Scholar 

  61. Kühne W (1864) Untersuchungen über das Protoplasma und die Contractilität. Engelmann, Leipzig

    Book  Google Scholar 

  62. Lenman AJR, Tulley FM, Vrbova G, Dimitrijevic MR, Towle JA (1989) Muscle fatigue in some neurological disorders. Muscle Nerve 12:938–942

    Article  PubMed  CAS  Google Scholar 

  63. Lännergren J, Westerblad H, Allen DG (1993) Mechanisms of fatigue as studied in single muscle fibres. In: Sargeant AJ, Kernell D (eds) Neuromuscular fatigue. Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp 3–11

    Google Scholar 

  64. McComas AJ, Galea V, Einhorn RW, Hicks AL, Kuick S (1993) The role of the Na-, K--pump in delaying muscle fatigue. In: Sargeant AJ, Kernell D (eds) Neuromuscular fatigue. Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp 35–43

    Google Scholar 

  65. McLennan IS (1994) Neurogenic and myogenic regulation of skeletal muscle formation: a critical re-evaluation. Prog Neurobiol 44:119–140

    Article  PubMed  CAS  Google Scholar 

  66. Meyerhof DO (1930) Die chemischen Vorgänge im Muskel. Springer, Berlin

    Google Scholar 

  67. Miller RG, Green AT, Moussavi RS, Carson PJ, Weiner MW (1990) Excessive muscular fatigue in patients with spastic paraparesis. Neurology 40:1271–1274

    Article  PubMed  CAS  Google Scholar 

  68. Mumentaler M (1979) Neurologie, 6th edn. Thieme, Stuttgart

    Google Scholar 

  69. Needham DM (1971) Machina carnis: the biochemistry of muscular contraction in its historical development. Cambridge University Press, Cambridge

    Book  Google Scholar 

  70. Niemann U, Windhorst U, Meyer-Lohmann J (1986) Linear and nonlinear effects in the interactions of motor units and muscle spindle afferents. Exp Brain Res 63:639–649

    Article  PubMed  CAS  Google Scholar 

  71. Noll D, Weber HH (1934) Polarisationsoptik und molekularer Feinbau der Q-Abschnitte des Froschmuskels. Pflugers Arch Ges Physiol 325:234–246

    Google Scholar 

  72. Otten E (1988) Concepts and models of functional architecture in skeletal muscle. Exerc Sport Sci Rev 16:89–139

    Article  PubMed  CAS  Google Scholar 

  73. Parmiggiani F, Stein RB (1981) Nonlinear summation of contractions in cat muscles. II. Later facilitation and stiffness changes. J Gen Physiol 78:295–311

    Article  PubMed  CAS  Google Scholar 

  74. Partridge LD (1966) Signal-handling characteristics of load-moving skeletal muscle. Am J Physiol 210:1178–1191

    PubMed  CAS  Google Scholar 

  75. Partridge LD, Benton LA (1981) Muscle, the motor. In: Brooks VB (ed) The nervous system. American Physiological Society, Bethesda, pp 43–106 (Handbook of physiology, vol II, part 1)

    Google Scholar 

  76. Peachey LD (1965) The sarcoplasmic reticulum and transverse tubules of the frog’s sartorius. J Cell Physiol 25:209–231

    Google Scholar 

  77. Powers RK, Binder MD (1991) Summation of motor unit tensions in the tibialis posterior muscle of the cat under isometric and nonisometric conditions. J Neurophysiol 66:1838–1846

    PubMed  CAS  Google Scholar 

  78. Reedy MK, Holmes KC, Tregear RT (1965) Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle. Nature 207:1276–1280

    Article  PubMed  CAS  Google Scholar 

  79. Rüegg JC (1989) Muscle. In: Schmidt RF, Thews G (eds) Human physiology. Springer, Berlin Heidelberg New York, pp 62–81

    Google Scholar 

  80. Schipiloff C, Danilewsky A (1881) Ueber die Natur der anisotropen Substanzen des quergestreiften Muskels und ihre räumliche Vertheilung im Muskelbündel. Hoppe Seylers Z 5:349–365

    Google Scholar 

  81. Sjøgaard G (1991) Role of exercise-induced potassium fluxes underlying muscle fatigue: a brief review. Can J Physiol Pharmacol 69:238–245

    Article  PubMed  Google Scholar 

  82. Smith ICH (1972) Energetics of activation in frog and toad muscle. J Physiol (Lond) 220:583–599

    PubMed  CAS  Google Scholar 

  83. Stein RB, Lee RG (1981) Tremor and clonus. In: Brooks VB (ed) The nervous system. American Physilogical Society, Bethesda, pp 325–343 (Handbook of physiology, vol II, part 1)

    Google Scholar 

  84. Stein RB, Parmiggiani F (1981) Nonlinear summation of contractions in cat muscles. I. Early depression. J Gen Physiol 78:277–293

    Article  PubMed  CAS  Google Scholar 

  85. Straub FB (1943) Actin. Stud Inst Med Chem Univ Szeged 2:3–15

    Google Scholar 

  86. Stuart DG, Callister RJ (1993) Afferent and spinal reflex aspects of muscle fatigue: issues and speculations. In: Sargeant AJ, Kernell D (eds) Neuromuscular fatigue. Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp 169–180

    Google Scholar 

  87. Szent-Györgyi A (1943) Discussion. Stud Inst Med Chem Univ Szeged 1:67–71

    Google Scholar 

  88. von Helmholtz H (1848) Ueber die Wärmeentwickelung bei der Muskelaction. Arch Anat Physiol 144–164

    Google Scholar 

  89. von Muralt AL, Edsall JT (1930) Studies in the physical chemistry of muscle globulin. III. The anisotropy of myosin and the angle of isocline. J Biol Chem 89:315–350

    Google Scholar 

  90. Walker SM, Schrodt GR (1974) I-segment lengths and thin filament periods in skeletal muscle fibers of the Rhesus monkey and the human. Anat Rec 178:63–82

    Article  PubMed  CAS  Google Scholar 

  91. Walmsley B, Proske U (1981) Comparison of stiffness of soleus and medial gastrocnemius muscles in cats. J Neurophysiol 46:250–259

    PubMed  CAS  Google Scholar 

  92. Westerblad H, Lee JA, Lännergren J, Allen DG (1991) Cellular mechanisms of fatigue in skeletal muscle. Am J Physiol 261 (Cell Physiol 30):C195-C209

    PubMed  CAS  Google Scholar 

  93. Wilkie DR (1960) Thermodynamics and the interpretation of biological heat measurements. Prog Biophys Chem 10:259–298

    CAS  Google Scholar 

  94. Wilkie DR (1968) Heat work and phosphorylcreatine breakdown in muscle. J Physiol (Lond) 195:157–183

    PubMed  CAS  Google Scholar 

  95. Wilson DM, Larimer JL (1968) The catch property of ordinary muscle. Proc Natl Acad Sci U S A 61:909–922

    Article  PubMed  CAS  Google Scholar 

  96. Windhorst U (1988) How brain-like is the spinal cord? Interacting cell assemblies in the nervous system. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  97. Windhorst U, Boorman G (1995) Potential role of segmental motor circuitry. In: Gandevia S, Enoka R, McComas AJ, Stuart DG, Thomas CK (eds) Neural and neuromuscular aspects of muscle fatigue. Plenum, New York (in press)

    Google Scholar 

  98. Wottiez RD, Huijing PA, Rozendal RH (1983) Influence of muscle architecture on the length-force diagram of mammalian muscle. Pflugers Arch 399:275–279

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Windhorst, U., Mommaerts, W.F.H.M. (1996). Physiology of Skeletal Muscle. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics