Skip to main content

From Neuron to Gestalt: Mechanisms of Visual Perception

  • Chapter
Comprehensive Human Physiology

Abstract

The study of visual perception is one of the most fascinating areas of modern brain research. About one quarter of the human cerebral cortex (a third in the monkey) is predominantly dedicated to the analysis of visual information [347]. We depend on visual stimuli for the majority of our experiences; they tell us where things are, and how they move. Among all the sense modalities, research has advanced the furthest in the field of vision. However, the techniques and paradigms developed to explore vision may also be useful for studying other sensory modalities. In presenting a review of the mechanisms of visual perception in humans and higher mammals, we thus intend to give the reader a better understanding not only of vision, but of sensory processing in general (see also [59,111,195,312,341]).

“Perception remains the most solid basis for sensory physiology” Richard Jung [169]

Dedicated to the memory of Otto Creutzfeldt (1927–1992)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramov I, Gordon J (1994) Color appearance: on seeing red or yellow, or green, or blue. Annu Rev Psychol 45:451–485

    PubMed  CAS  Google Scholar 

  2. Addams R (1834) An account of a peculiar phenomenon seen after having looked at a moving body. Lond Edinb Phil Mag J Sci 5:373–374

    Google Scholar 

  3. Adelson EH (1993) Perceptual organization and the judgment of brightness. Science 262:2042–2044

    PubMed  CAS  Google Scholar 

  4. Adelson EH, Movshon JA (1982) Phenomenal coherence of moving visual patterns. Nature 300:523–525

    PubMed  CAS  Google Scholar 

  5. Allman J, Miezin F, McGuinness E (1991) Effect of background motion on the responses of neurons in the first and second cortical visual areas. In: Edelman GM, Gall WE, Cowan MW (eds) Signal and sense: local and global order in perceptual maps. Wiley, New York, pp 131–142

    Google Scholar 

  6. Allman J, Miezin F, McGuinness E (1985a) Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception 14:105–126

    PubMed  CAS  Google Scholar 

  7. Allman J, Miezin F, McGuinness E (1985b) Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Annu Rev Neurosci 8:407–430

    PubMed  CAS  Google Scholar 

  8. Anstis S (1975) What does visual perception tell us about visual coding. In: Gazzaniga MS, Blakemore C (ed) Handbook of psychobiology. Academic, New York, pp 269–323

    Google Scholar 

  9. Anstis S (1992) Visual adaptation to a negative, brightness reversed world: some preliminary observations. In: Carpenter GA, Grossberg S (eds) Neural networks for vision image processing. MIT Press, Cambridge MA, pp 1–14

    Google Scholar 

  10. Arnold K, Anstis S (1992) Properties of the visual channels that underlie adaptation to gradual change of luminance. Vision Res 33:47–54

    Google Scholar 

  11. Aulhorn E, Kost G (1990) Rauschfeldkampimetrie. Eine neuartige perimetrische Untersuchungsmethode. Klin Monatsbl Augenheilkd 192:165–188

    Google Scholar 

  12. Awaya S, Sugawara M (1984) Die sensitive Periode für die Entwicklung der Deprivationsamblyopie. Klin Monatsbl Augenheilkd 98 [Suppl]:189–196

    Google Scholar 

  13. Barbur JL, Watson KD, Frackowiak RS, Zeki S (1993) Concious visual perception without VI. Brain 116:1293–1302

    PubMed  Google Scholar 

  14. Barlow HB (1953) Summation and inhibition in the frog’s retina. J Physiol (Lond) 119:69–88

    PubMed  CAS  Google Scholar 

  15. Barlow HB (1972) Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1:371–394

    PubMed  CAS  Google Scholar 

  16. Barlow HB (1981) Critical limiting factors in the design of the eye and visual cortex. Proc R Soc B 1981:1–34

    Google Scholar 

  17. Barlow HB (1985) Perception: what quantitative laws govern the acquisition of knowledge from the senses? In: Coen CW (ed) Functions of the brain. Clarendon, Oxford, pp 11–43

    Google Scholar 

  18. Barlow HB (1990) Conditions for versatile learning, Helmholtz’s unconcious inference, and the task of perception. Vision Res 30:1561–1571

    PubMed  CAS  Google Scholar 

  19. Barlow HB (1993) Object identification and cortical organisation. In: Ottoson E, Gulyas B, Roland P (eds) The functional organisation of the human visual cortex. Pergamon, Oxford, pp 75–100

    Google Scholar 

  20. Barlow HB (1994) The neuron doctrine in perception. In: Gazzaniga M (ed) The cognitive neurosciences. MIT Press, Cambridge, pp 415–435

    Google Scholar 

  21. Barlow HB, Blakemore CB, Pettigrew JD (1967) The neural mechanism of binocular depth discrimination. J Physiol (Lond) 193:327–342

    PubMed  CAS  Google Scholar 

  22. Barlow HB, Derrington AM, Harris LR, Lennie P (1977) The effect of remote retinal stimulation on the responses of cat retinal ganglion cells. J Physiol (Lond) 269:177–194

    PubMed  CAS  Google Scholar 

  23. Barlow HB, Hill RM (1963) Evidence for a physiological explanation of the waterfall phenomenon and figurai aftereffects. Nature 200:1345–1347

    PubMed  CAS  Google Scholar 

  24. Barlow HB, Hill RM, Levick RW (1964) Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J Physiol (Lond) 173:377–407

    PubMed  CAS  Google Scholar 

  25. Baumgartner G (1960) Indirekte Grössenbestimmung der receptiven Felder der Retina beim Menschen mittels der Hermannschen Gittertäuschung. Pflugers Arch 272:21–22

    Google Scholar 

  26. Baumgartner G (1961) Der Informationswert der on- und off-Zentrum-Neurone des visuellen Systems beim Hell-Dunkel-Sehen und die informative Bedeutung von Aktivierung und Hemmung. In: Jung R, Kornhuber H (eds) Neurophysiologie und Psychophysik des visuellen Systems. Springer, Berlin Göttingen Heidelberg, pp 377–379

    Google Scholar 

  27. Baumgartner G (1961) Neuronale Grundlagen der visuellen Kontrastverschärfung und die Signalübertragung vom Auge zur Hirnrinde. In: VDE Nachrichtentechnische Gesellschaft (ed) Aufnahme und Verarbeitung von Nachrichten durch Organismen. Hirzel, Stuttgart, pp 100–108

    Google Scholar 

  28. Baumgartner G (1990) Where do visual signals become a perception. In: Eccles JC, Creutzfeldt O (eds) The principles of design and operation of the brain. Springer, Berlin Heidelberg New York, pp 99–114 (Experimental brain research series, vol 21)

    Google Scholar 

  29. Baumgartner G, von der Heydt R, Peterhans E (1984) Anomalous contours: a tool in studying the neurophysiology of vision. Exp Brain Res [Suppl 9]:413–419

    Google Scholar 

  30. Beck J (1983) Textural segmentation, second-order statistics and textural elements. Biol Cybern 48:125–130

    PubMed  CAS  Google Scholar 

  31. Berardi N, Fiorentini A (1991) Visual field asymmetries in pattern discrimination: a sign of asymmetry in cortical visual field representation. Vision Res 31:1831–1836

    PubMed  CAS  Google Scholar 

  32. Berkley MA (1990) Visual aftereffects in the cat. In: Berkley MA, Stebbins WC (eds) Comparative perception. Basic mechanisms, vol 1. Wiley, New York, pp 97–126

    Google Scholar 

  33. Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94:115–147

    PubMed  CAS  Google Scholar 

  34. Bishop PO, Henry GH (1971) Spatial vision. Annu Rev Psychol 22:119–160

    PubMed  CAS  Google Scholar 

  35. Blake A, Bülthoff HH (1990) Does the brain know the physics of specular reflection? Nature 343:165–168

    PubMed  CAS  Google Scholar 

  36. Blakemore CB (1973) The baffled brain. In: Gregory RL, Gombrich EH (eds) Illusion in nature and art. Duckworth, London, pp 9–47

    Google Scholar 

  37. Blakemore CB (1988) The sensitive period of the monkey’s visual cortex. In: Lennerstrand G, von Noorden GK, Campos E (eds) Strabismus and amblyopia: experimental basis for advances in clinical management. Macmillan, London, pp 219–234

    Google Scholar 

  38. Blakemore CB, Campbell FW (1969) On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol (Lond) 203:237–260

    PubMed  CAS  Google Scholar 

  39. Blakemore CB, Cooper GF (1970) Development of the brain depends on the visual environment. Nature 228:477–478

    PubMed  CAS  Google Scholar 

  40. Blakemore CB, Fiorentini A, Maffei L (1972) A second neural mechanism of binocular depth discrimination. J Physiol (Lond) 226:725–749

    PubMed  CAS  Google Scholar 

  41. Blakemore CB, Nachmias J, Sutton P (1970) The perceived frequency shift: evidence for frequency selective neurones in the human brain. J Physiol (Lond) 210:727–750

    PubMed  CAS  Google Scholar 

  42. Blakemore CB, Sutton P (1969) Size adaptation: a new aftereffect. Science 166:245–247

    PubMed  CAS  Google Scholar 

  43. Blakemore CB, Tobin EA (1972) Lateral inhibition between orientation detectors in the cat’s visual cortex. Exp Brain Res 15:439–440

    PubMed  CAS  Google Scholar 

  44. Blakemore CB, van Sluyters RC (1975) Innate and environmental factors in the development of the kitten’s visual cortex. J Physiol (Lond) 248:663–716

    PubMed  CAS  Google Scholar 

  45. Blinkov SM, Glezer II (1968) The human brain in figures and tables. Plenum, New York, p 397

    Google Scholar 

  46. Bolz J, Gilbert CD, Wiesel TN (1989) Pharmacological analysis of cortical circuitry. Trends Neurosci 12:292–296

    PubMed  CAS  Google Scholar 

  47. Bolz J, Götz M, Hübener M, Novak N (1993) Reconstructing cortical connection in a dish. Trends Neurosci 16:310–316

    PubMed  CAS  Google Scholar 

  48. Bonhoeffer F, Gierer A (1984) How do retinal axons find their targets on the tectum? Trends Neurosci 7:378–381

    Google Scholar 

  49. Bonnet C (1975) A tentative model for visual motion detection. Psychologia 18:35–50

    Google Scholar 

  50. Bonnet C (1984) Two systems in the detection of visual motion. Ophthalmic Physiol Opt 4:61–65

    PubMed  CAS  Google Scholar 

  51. Boycott BB, Dowling JE (1969) Organization of primate retina: light microscopy. Philos Trans R Soc B 255:109–184

    Google Scholar 

  52. Braddick OJ (1974) A short-range process in apparent motion. Vision Res 14:519–527

    PubMed  CAS  Google Scholar 

  53. Braitenberg V, Schüz A (1991) Anatomy of the cortex. Statistics and geometry. Springer, Berlin Heidelberg New York

    Google Scholar 

  54. Brand JL, Holding DH, Jones PD (1987) Conditioning and blocking of the McCollough effect. Percept Psychophys 41:313–317

    PubMed  CAS  Google Scholar 

  55. Breitmeyer BG (1984) Visual masking. An integrative approach. Oxford University Press, New York

    Google Scholar 

  56. Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol (Lond) 196:479–493

    PubMed  CAS  Google Scholar 

  57. Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci 12:4745–4765

    PubMed  CAS  Google Scholar 

  58. Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellbaues. Barth, Leipzig

    Google Scholar 

  59. Bruce V, Green PR (1990) Visual perception: physiology, psychology and ecology, 2nd edn. Erlbaum, Hillsdale

    Google Scholar 

  60. Bülthoff HH, Mallot HA (1990) Integration of stereo, shading and texture. In: Blake A, Troscianko T (eds) AI and the eye. Wiley, Chichester, pp 119–145

    Google Scholar 

  61. Bunt AH, Minckler DS, Johanson GW (1977) Demonstration of bilateral projection of the central retina of the monkey with horseradish peroxidase neuronography. J Comp Neurol 171:619–630

    PubMed  CAS  Google Scholar 

  62. Cajal S, Ramon Y (1893) La rétinue des vertébrés. Translated by Maguire D, Rodieck RW (1973) The vertebrate retina (Freeman, San Francisco). La Cellule 9:17–257

    Google Scholar 

  63. Campbell FW, Cleland BG, Cooper GF, Enroth-Cugell C (1968) The angular selectivity of visual cortical cells to moving gratings. J Physiol (Lond) 198:237–250

    PubMed  CAS  Google Scholar 

  64. Campbell FW, Kulikowski JJ (1966) Orientational selectivity of the human visual system. J Physiol (Lond) 187:437–445

    PubMed  CAS  Google Scholar 

  65. Campbell FW, Maffei L (1970) Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J Physiol (Lond) 207:635–652

    PubMed  CAS  Google Scholar 

  66. Campbell FW, Robson JG (1968) Application of Fourier analysis to the visibility of gratings. J Physiol (Lond) 197:551–556

    PubMed  CAS  Google Scholar 

  67. Carpenter RA, Blakemore C (1973) Interactions between orientations in human vision. Exp Brain Res 18:287–303

    PubMed  CAS  Google Scholar 

  68. Cavanagh P (1987) Reconstructing the third dimension: interactions between color, texture, motion, binocular disparity and shape. Comput Vis Graph Image Proc 37:171–195

    Google Scholar 

  69. Cavanagh P (1991) Vision at equiluminance. In: Kulikowski JJ, Walsh V, Murray IJ (eds) Limits of vision, vol 5: vision and visual dysfunction. CRC Press, Boca Raton, pp 234–250

    Google Scholar 

  70. Coletta N, Williams DR (1987) Psychophysical estimate of extrafoveal cone spacing. J Opt Soc Am [A] 4:1503–1513

    CAS  Google Scholar 

  71. Cowey A (1979) Cortical maps and visual perception. Q J Exp Psychol 31:1–17

    PubMed  CAS  Google Scholar 

  72. Cowey A, Rolls ET (1974) Human cortical magnification factor and its relation to visual acuity. Exp Brain Res 21:447–454

    PubMed  CAS  Google Scholar 

  73. Creutzfeldt O (1973) Some neurophysiological considerations concerning “memory”. In: Zippel HP (ed) Memory and transfer of information. Plenum, New York, pp 293–302

    Google Scholar 

  74. Creutzfeldt O, Heggelund P (1975) Neural plasticity in visual cortex of adult cats after exposure to visual patterns. Science 188:1025–1027

    PubMed  CAS  Google Scholar 

  75. Creutzfeldt OD, Nothdurft HC (1978) Representation of complex stimuli in the brain. Naturwissenschaften 65:307–318

    PubMed  CAS  Google Scholar 

  76. Curcio CA, Allen K, Sloan K, Lerea C, Klock I, Milam A (1991) Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J Comp Neurol 312:610–624

    PubMed  CAS  Google Scholar 

  77. Curcio CA, Sloan KR, Kalina RE (1990) Human photoreceptor topography. J Comp Neurol 292:497–523

    PubMed  CAS  Google Scholar 

  78. Curcio CA, Sloan KR, Packer O, Hendrickson AE, Kalina RE (1987) Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science 236:579–582

    PubMed  CAS  Google Scholar 

  79. Damasio AR, Damasio H, von Hoesen GW (1982) Prosopagnosia: anatomic basis and behavioral mechanisms. Neurology 32:331–341

    PubMed  CAS  Google Scholar 

  80. Daniel PM, Whitteridge D (1961) The representation of the visual field on the cerebral cortex in monkeys. J Physiol (Lond) 159:203–221

    PubMed  CAS  Google Scholar 

  81. De Monasterio FM, Gouras P, Tolhurst DJ (1975) Trichromatic colour opponency in ganglion cells of the rhesus monkey retina. J Physiol (Lond) 251:197–216

    PubMed  Google Scholar 

  82. Desimone R, Schein SJ, Moran J, Ungerleider J (1985) Contour, color and shape analysis beyond the striate cortex. Vision Res 25:441–452

    PubMed  CAS  Google Scholar 

  83. DeValois RL, Albrecht DG, Thorell DG (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vision Res 22:545–559

    CAS  Google Scholar 

  84. DeValois RL, DeValois KK (1990) Spatial vision. Oxford University Press, New York

    Google Scholar 

  85. De Yoe EA, Van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends Neurosci 11:219–226

    Google Scholar 

  86. Dow BM, Snyder AZ, Vautin RR, Bauer R (1981) Magnification factor and receptive field size in foveal striate cortex of the monkey. Exp Brain Res 44:213–288

    PubMed  CAS  Google Scholar 

  87. Dowling JE (1992) Neurons and networks. Harvard University Press, Cambridge

    Google Scholar 

  88. Drasdo N (1977) The neural representation of visual space. Nature 266:554–556

    PubMed  CAS  Google Scholar 

  89. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboek HJ (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analysis in the cat. Biol Cybern 60:121–130

    PubMed  CAS  Google Scholar 

  90. Ehrenstein W (1930) Untersuchungen über Figur-Grund-Fragen. Z Psychol 117:339–412

    Google Scholar 

  91. Ehrenstein W (1954) Probleme der ganzheitspsychologischen Wahrnehmungslehre, 3rd edn. Barth, Leipzig

    Google Scholar 

  92. Ehrenstein WH (1994) Perceptual constancy during ocular pursuit in the upper and lower visual field. Pflugers Arch Eur J Physiol 426 [Suppl 1]:R95

    Google Scholar 

  93. Ehrenstein WH, Schlykowa L, Cavonius CR (1991a) Choice reaction times to motion in the upper and lower visual field. Pflugers Arch Eur J Physiol 419:R80

    Google Scholar 

  94. Ehrenstein WH, Spillmann L (1983) Time thresholds for increments and decrements in luminance. J Opt Soc Am 73:419–426

    PubMed  CAS  Google Scholar 

  95. Engel AK, König P, Kreiter AK, Schulen TB, Singer W (1992) Temporal coding in the visual cortex. New vistas on integration in the nervous system. Trends Neurosci 15:218–226

    PubMed  CAS  Google Scholar 

  96. Epstein W (1988) Has the time come to rehabilitate Gestalt theory? Psychol Res 50:2–6

    PubMed  CAS  Google Scholar 

  97. Eysel U (1993) Filling-in of the visual map following local cortical cell death. In: Eisner N, Heisenberg M (eds) Gene -brain — behaviour. Thieme, Stuttgart, p 137

    Google Scholar 

  98. Fahle M, Schmid M (1988) Naso-temporal asymmetry of visual perception and of the visual cortex. Vision Res 28:293–300

    PubMed  CAS  Google Scholar 

  99. Fantz RL, Ordy JM, Udelf MS (1962) Maturation of pattern vision in infants during the first six months. J Comp Physiol Psychol 55:907–917

    Google Scholar 

  100. Fechner GT (1860) Elemente der Psychophysik, 2 vols. Breitkopf und Härtel, Leipzig

    Google Scholar 

  101. Felleman DJ, van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cort 1:1–47

    CAS  Google Scholar 

  102. Fendick M, Westheimer G (1983) Effects of practice and the separation of test targets on foveal and peripheral stereoacuity. Vision Res 23:145–150

    PubMed  CAS  Google Scholar 

  103. Fendrich R, Wessinger CM, Gazzinaga MS (1992) Residual vision in a scotoma. Implications for blindsight. Science 258:1489–1491

    PubMed  CAS  Google Scholar 

  104. Fiorentini A, Berardi N (1991) Limits in pattern discrimination: central and peripheral factors. In: Kulikowski JJ, Walsh V, Murray IJ (eds) Limits of vision. Macmillan, London, pp 266–276

    Google Scholar 

  105. Fischer B, May HU (1970) Invarianzen in der Katzenretina: gesetzmäßige Beziehungen zwischen Empfindlichkeit, Größe und Lage rezeptiver Felder von Ganglienzellen. Exp Brain Res 11:448–464

    PubMed  CAS  Google Scholar 

  106. Fox PT, Miezin FM, Allman JM, Van Essen DC, Raichle ME (1987) Retinotopic organization of human visual cortex mapped with positron emission tomography. J Neurosci 7:913–922

    PubMed  CAS  Google Scholar 

  107. Frégnac Y (1991) How many cycles make an oscillation? In: Gorea A, Frégnac Y, Kapoula Z, Findlay J (eds) Representations of vision: trends and tacit assumptions in vision research. Cambridge University Press, Cambridge, pp 97–109

    Google Scholar 

  108. Frost BJ (1978) Moving background patterns alter directionally specific responses of pigeon tectal neurons. Brain Res 151:599–603

    PubMed  CAS  Google Scholar 

  109. Frost DO, Metin C (1989) Induction of functional retinal projections to the somatosensory system. Nature 317:162–174

    Google Scholar 

  110. Ganz L (1966) Is the figural aftereffect an aftereffect? A review of its intensity, onset, decay, and transfer characteristics. Psychol Bull 73:128–150

    CAS  Google Scholar 

  111. Gazzaniga M (1994) The cognitive neurosciences. MIT Press, Cambridge MA

    Google Scholar 

  112. Gelb A, Goldstein K (1920) Psychologische Analysen hirnpathologischer Fälle. Barth, Leipzig

    Google Scholar 

  113. Gemelli A (1928) Über das Entstehen von Gestalten. Arch Gesamte Psychol 65:123–134

    Google Scholar 

  114. Georgeson M (1976) Antagonism between channels for pattern and movement in human vision. Nature 259:413–415

    PubMed  CAS  Google Scholar 

  115. Gibson EJ, Owsley CJ, Johnston J (1978) Perception of invariants by 5-month-old infants: differentiation of two types of motion. Dev Psychol 14:407–415

    Google Scholar 

  116. Gibson JJ (1961) Ecological optics. Vision Res 1:253–262

    Google Scholar 

  117. Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  118. Gibson JJ, Radner M (1937) Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies. J Exp Psychol 20:453–467

    Google Scholar 

  119. Gilbert CD (1992) Horizontal integration and cortical dynamics. Neuron 9:1–13

    CAS  Google Scholar 

  120. Gilbert CD, Wiesel TN (1990) The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Res 30:1689–1701

    PubMed  CAS  Google Scholar 

  121. Gilbert CD, Wiesel TN (1992) Receptive field dynamics in adult primary visual cortex. Nature 356:150–152

    PubMed  CAS  Google Scholar 

  122. Gilchrist AL (1977) Perceived lightness depends on perceived spatial arrangement. Science 195:185–187

    PubMed  CAS  Google Scholar 

  123. Gilinski AS (1984) Mind and Brain. Principles of neuropsychology. Praeger, New York

    Google Scholar 

  124. Goldstein K (1927) Die Lokalisation in der Großhirnrinde. In: Bethe A (ed) Handbuch der normalen und pathologischen Physiologie, vol 10. Springer, Berlin, pp 600–824

    Google Scholar 

  125. Gottschaldt K (1926) Über den Einfluß der Erfahrung auf die Wahrnehmung von Figuren. Psychol Forsch 8:261–317

    Google Scholar 

  126. Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar syn-chronization which reflects global stimulus properties. Nature 338:334–337

    PubMed  CAS  Google Scholar 

  127. Gregory RL (1977) Vision with isoluminant colour contrast. 1. A projection technique and observations. Perception 6:113–119

    PubMed  CAS  Google Scholar 

  128. Gregory RL (1980) Perceptions as hypotheses. Philos Trans Royal Soc B 290:181–197

    CAS  Google Scholar 

  129. Gregory RL, Wallace JG (1963) Recovery from early blindness: a case study. Exp Psychol Soc Monogr 2. Heffner, Cambridge

    Google Scholar 

  130. Gross CG, Rocha-Miranda CE, Bender DB (1972) Visual properties of neurons in inferior temporal cortex of the macaque. J Neurophysiol 35:96–111

    PubMed  CAS  Google Scholar 

  131. Grossberg S (1994) 3-D vision and figure-ground separation by visual cortex. Percept Psychophys 55:48–120

    PubMed  CAS  Google Scholar 

  132. Grüsser O-J (1995) Migraine phosphenes and the retino-cor-tical magnification factor. Vision Res 35:1125–1134

    PubMed  Google Scholar 

  133. Grüsser O-J, Grüsser-Cornehls U (1973) Neuronal mechanisms of visual movement perception and some psychological and behavioral correlations. In: Jung R (ed) Central processing of visual information. Springer, Berlin Heidelberg New York, pp 333–429 (Handbook of sensory physiology, vol VII/3A)

    Google Scholar 

  134. Grüsser O-J, Landis T (1991) Visual agnosias and other disturbances of visual perception and cognition. In: Cronly-Dillon J (ed) Vision and visual dysfunction, vol 12. Macmillan, London

    Google Scholar 

  135. Haken H (1979) Pattern formation and pattern recognition — an attempt at a synthesis. In: Haken H (ed) Pattern formation by dynamic systems and pattern recognition. Springer, Berlin Heidelberg New York

    Google Scholar 

  136. Haken H, Stadler M (1990) Synergetics of cognition. Springer, Berlin Heidelberg New York

    Google Scholar 

  137. Hammond P, MacKay DM (1981) Modulatory influences of moving textured backgrounds on responsiveness of simple cells in feline striate cortex. J Physiol (Lond) 319:431–442

    PubMed  CAS  Google Scholar 

  138. Hanly M, MacKay DM (1979) Polarity-sensitive perceptual adaptation to temporal sawtooth modulation of luminance. Exp Brain Res 35:37–46

    PubMed  CAS  Google Scholar 

  139. Harris CS (1980) Insight or out of sight? Two examples of perceptual plasticity in the human adult. In: Harris CS (ed) Visual coding and adaptability. Erlbaum, Hillsdale NJ, pp 95–149

    Google Scholar 

  140. Hartline HK (1940) The receptive fields of optic nerve fibers. Am J Physiol 130:690–699

    Google Scholar 

  141. Hawken M J, Gegenfurtner KR, Tang C (1993) Contrast dependence of colour and luminance motion mechanisms in human vision. Nature 367:268–270

    Google Scholar 

  142. Hebb D (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  143. Held J (1968) Dissociation of visual functions by deprivation and rearrangement. Psychol. Forsch. 31:338–348

    Google Scholar 

  144. Held R, Hein A (1963) Movement-produced stimulation in the development of visually guided behavior. J Comp Physiol Psychol 56:872–876

    PubMed  CAS  Google Scholar 

  145. Held R, Rekosh J (1963) Motor-sensory feedback and geometry of visual space. Science 141:722–723

    PubMed  CAS  Google Scholar 

  146. Held R, Ingle D, Schneider GE, Trevarthen CB (1967) Locating and identifying: two modes of visual processing. Psychol Forsch 31:44–62

    Google Scholar 

  147. Henle M (1984) Isomorphism: setting the record straight. Psychol Res 46:317–327

    Google Scholar 

  148. Hering E (1920) Grundzüge der Lehre vom Lichtsinn. Springer, Berlin Heidelberg New York

    Google Scholar 

  149. Hess EH (1961) Shadows and depth perception. Sci Am 204:138–148

    PubMed  CAS  Google Scholar 

  150. Heywood CA, Cowey A (1987) On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys. J Neurosci 7:2601–2617

    PubMed  CAS  Google Scholar 

  151. Hirsch HVB, Spinelli DN (1970) Visual experience modifies distribution of horizontal and vertically oriented receptive fields in cats. Science 168:869–871

    PubMed  CAS  Google Scholar 

  152. Holmes G (1918) Disturbances of visual orientation. Br J Ophthalmol 2:449–468

    PubMed  CAS  Google Scholar 

  153. Horton JC, Hedley-Whyte ET (1984) Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. Proc R Soc B 304:255–272

    CAS  Google Scholar 

  154. Howard IP (1982) Human visual orientation. Wiley, New York

    Google Scholar 

  155. Hubel DH (1988) Eye, brain, and vision. Freeman, New York

    Google Scholar 

  156. Hubel DH, Livingstone MS (1987) Segregation of form, color, and stereopsis in primate area 18. J Neurosci 7:3378–3415

    PubMed  CAS  Google Scholar 

  157. Hubel DH, Wiesel TN (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J Neurophysiol 28:229–289

    PubMed  CAS  Google Scholar 

  158. Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol (Lond) 195:215–243

    PubMed  CAS  Google Scholar 

  159. Hubel DH, Wiesel TN (1974) Uniformity of monkey striate cortex: a parallel relationship between field size, scatter and magnification factor. J Comp Neurol 158:295–306

    PubMed  CAS  Google Scholar 

  160. Hubel DH, Wiesel TN (1977) Ferrier lecture: functional architecture of macaque monkey cortex. Proc R Soc B 198:1–59

    CAS  Google Scholar 

  161. Hübener M, Schwarz C, Bolz J (1990) Morphological types of projection neurons in layer 5 of cat visual cortex. J Comp Neurol 301:655–674

    PubMed  Google Scholar 

  162. Hunzelmann N, Spillmann L (1984) Movement adaptation in the peripheral retina. Vision Res 24:1765–1769

    PubMed  CAS  Google Scholar 

  163. Huttenlocher PR, DeCourten CHR, Garey LJ (1982) Synaptogenesis in human visual cortex — evidence for synapse elimination during normal development. Neurosci Lett 33:247–252

    PubMed  CAS  Google Scholar 

  164. Hyvärinen J (1982) The parietal cortex of monkey and man. Springer, Berlin Heidelberg New York

    Google Scholar 

  165. Ingle D (1967) Two visual mechanisms underlying the behaviour offish. Psychol Forsch 31:44–51

    PubMed  CAS  Google Scholar 

  166. Julesz B (1960) Binocular depth perception of computer-generated patterns. Bell Syst Techn J 39:1125–1162

    Google Scholar 

  167. Julesz B (1971) Foundations of cyclopean perception. University of Chicago Press, Chicago

    Google Scholar 

  168. Jung R (1961) Korrelationen von Neuronentätigkeit und Sehen. In: Jung R, Kornhuber H (eds) Neurophysiologie und Psychophysik des visuellen Systems. Springer, Berlin Heidelberg New York, pp 410–434

    Google Scholar 

  169. Jung R (1973) Visual perception and neurophysiology. In: Jung R (ed) Central processing of visual information. Springer, Berlin Heidelberg New York, pp 1–152 (Handbook of sensory physiology, vol VII/3A)

    Google Scholar 

  170. Jung R (1979) Translokation corticaler Migränephosphene bei Augenbewegungen und vestibulären Reizen. Neuropsychologia 17:173–185

    PubMed  CAS  Google Scholar 

  171. Jung R, von Baumgarten R, Baumgartner G (1952) Mikroableitungen von einzelnen Nervenzellen im optischen Cortex der Katze: die lichtaktivierten B-Neurone. Arch Psychiatr Nervenk 189:521–539

    CAS  Google Scholar 

  172. Jung R, Spillmann L (1970) Receptive-field estimation and perceptual integration in human vision. In: Young FA, Lindsley DB (eds) Early experience and visual information processing in perceptual and reading disorders. National Academic, Washington, pp 181–197

    Google Scholar 

  173. Kanizsa G (1955) Margini quasi-percettivi in campi con stimolazione omogenea. Riv Psicol 49:7–30

    Google Scholar 

  174. Kapadia MK, Gilbert CD, Westheimer G (1994) A quantitative measure for short-term cortical plasticity in human vision. J Neurosci 14:451–457

    PubMed  CAS  Google Scholar 

  175. Kersten D, Bülthoff HH, Schwartz BL, Kurtz KJ (1992) Interaction between transparency and structure from motion. Neural Comput 4:573–589

    Google Scholar 

  176. Klein SA, Levi DM (1987) Position sense of the peripheral retina. J Opt Soc Am [A] 4:1543–1553

    CAS  Google Scholar 

  177. Knill DC, Kersten D (1991) Apparent surface curvature affects lightness perception. Nature 351:228–230

    PubMed  CAS  Google Scholar 

  178. Köhler W (1920) Die physischen Gestalten in Ruhe und im stationären Zustand. Vieweg, Braunschweig

    Google Scholar 

  179. Köhler W (1922) Gestaltprobleme und die Anfänge einer Gestalttheorie. Jahresber Ges Physiol Exp Pharmakol 3:512–539

    Google Scholar 

  180. Köhler W (1940) Dynamics in psychology. Liveright, New York

    Google Scholar 

  181. Köhler W (1950) Psychology and evolution. Acta Psychol 7:289–297

    Google Scholar 

  182. Köhler W, Held R (1949) The cortical correlate of pattern vision. Science 110:414–419

    PubMed  Google Scholar 

  183. Köhler W, Wallach H (1944) Figurai after-effects. An investigation of visual processes. Proc Am Philos Soc 88:269–357

    Google Scholar 

  184. Koffka K (1935) Principles of Gestalt psychology. Harcourt Brace and World, New York

    Google Scholar 

  185. Köhler I (1951) Über Aufbau und Wandlungen der Wahrnehmungswelt. Insbesondere über “bedingte Empfindungen”. Rohrer, Vienna, pp 1–118 (Österreichische Akademie der Wissenschaften, philosophisch-historische Klasse, Sitzungsbericht 227)

    Google Scholar 

  186. Konorski J (1967) Integrative activity of the brain: an interdisciplinary approach. University of Chicago Press, Chicago

    Google Scholar 

  187. Krüger J, Becker JD (1991) Recognizing the visual stimulus from neuronal discharges. Trends Neurosci 14:282–286

    PubMed  Google Scholar 

  188. Krüger J, Fischer B (1973) Strong periphery effect in cat retinal ganglion cells. Excitatory responses in ON- and OFF-center neurons to single grid displacements. Exp Brain Res 18:316

    PubMed  Google Scholar 

  189. Kruse P, Stadler M (1993) The significance of nonlinear phenomena for the investigation of cognitive systems. In: Haken H, Mikhailov A (eds) Synergetics: interdisciplinary approaches to nonlinear complex systems. Springer, Berlin Heidelberg New York, pp 138–160

    Google Scholar 

  190. Kubovy M, Pomerantz JR (1981) Perceptual organization. In: Kubovy M, Pomerantz J (eds) Perceptual organization. Erlbaum, Hillsdale, pp 423–456

    Google Scholar 

  191. Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16:37–68

    PubMed  CAS  Google Scholar 

  192. Kuffler SW, Nicholls JG, Martin AR (1984) From neuron to brain, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  193. Kurtenbach W, Magnussen S (1981) Inhibition, disinhibition, and summation among orientation detectors in human vision. Exp Brain Res 43:193–198

    PubMed  CAS  Google Scholar 

  194. Lamme VAF, van Dijk BW, Spekreijse H (1993) Contour from motion processing occurs in primary visual cortex. Nature 363:541–543

    PubMed  CAS  Google Scholar 

  195. LandyM, Movshon A (1991) Computational models of visual processing. MIT Press, Cambridge

    Google Scholar 

  196. Lashley KS, Chow KL, Semmes J (1951) An examination of the electrical field theory of cerebral integration. Psychol Rev 58:123–136

    PubMed  CAS  Google Scholar 

  197. Lee BB, Pokorny J, Smith VC, Martin PR, Valberg A (1990) Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. J Opt Soc Am [A] 7:2223–2236

    CAS  Google Scholar 

  198. LeVay S, Hubel DH, Wiesel TN (1975) The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain.J Comp Neurol 159:559–576

    PubMed  CAS  Google Scholar 

  199. Liebmann S (1927) Über das Verhalten farbiger Formen bei Helligkeitsgleichheit von Figur und Grund. Psychol Forsch 9:300–353

    Google Scholar 

  200. Lindemann E (1922) Experimentelle Untersuchungen über das Entstehen und Vergehen von Gestalten. Psychol Forsch 2:5–60

    Google Scholar 

  201. Linschoten J (1956) Strukturanalyse der binokularen Tiefenwahrnehmung. Wolters, Groningen

    Google Scholar 

  202. Linsker R (1988) Self-organization in a perceptual network. IEEE Computr 21:105–117

    Google Scholar 

  203. Livingstone MS, Hubel DH (1984) Anatomy and physiology of a color system in the primate visual cortex. J Neurosci 4:309–356

    PubMed  CAS  Google Scholar 

  204. Livingstone MS, Hubel DH (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 7:3416–3468

    PubMed  CAS  Google Scholar 

  205. Livingstone MS, Hubel DH (1988) Segregation of form, color, movement and depth: anatomy, physiology and perception. Science 240:740–750

    PubMed  CAS  Google Scholar 

  206. Logothetis NK, Charles ER (1990) V4 responses to gratings defined by random dot motion. Invest. Ophthalmol Vis Sci 31 [Suppl]:90

    Google Scholar 

  207. Logothetis NK, Schiller PH, Charles ER, Huribert AC (1990) Perceptual deficits and the activity of the color-opponent and broad-band pathways at isoluminance. Science 247:214–217

    PubMed  CAS  Google Scholar 

  208. Lorente de Nó R (1943) Cerebral cortex: architecture, intracortical connections, and motor projections. In: Fulton JF (ed) Physiology of the nervous system, 2nd edn, vol XV. Oxford University Press, London, pp 274–301

    Google Scholar 

  209. Luria SM (1959) Disorders of “simultaneous perception” in a case of bilateral occipito-parietal brain injury. Brain 82:437–449

    PubMed  CAS  Google Scholar 

  210. Mach E (1865) Über die Wirkung der räumlichen Verteilung des Lichtreizes auf der Netzhaut. Sitzungsberichte der Wiener Akademie der Wissenschaften, mathematish-natur-wissenschaftliche Classe, 2. Abteilung, vol 52, pp 303–322

    Google Scholar 

  211. Maffei L (1978) Spatial frequency channels: Neural mechanisms. In: Held R, Leibowitz HW, Teuber HL (ed) Handbook of sensory perception, vol VIII. Springer, Berlin, Heidelberg New York, pp 39–66

    Google Scholar 

  212. Maffei L, Fiorentini A (1976) The unresponsive regions of visual cortical receptive fields. Vision Res 16:1131–1139

    PubMed  CAS  Google Scholar 

  213. Magnussen S, Glad A (1975) Brightness and darkness enhancement during flicker: perceptual correlates of neuronal B- and D-system in human vision. Exp Brain Res 22:399–413

    Google Scholar 

  214. Magnussen S, Kurtenbach W (1980) Adapting to two orientations: disinhibition in a visual after-effect. Science 207:908–909

    PubMed  CAS  Google Scholar 

  215. Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. Freeman, San Francisco

    Google Scholar 

  216. Maunsell JHR, Newsome WT (1987) Visual processing in monkey extrastriate cortex. Annu Rev Neurosci 10:363–401

    PubMed  CAS  Google Scholar 

  217. McCollough C (1965) Color adaptation of edge-detectors in the human visual system. Science 149:1115–1116

    PubMed  CAS  Google Scholar 

  218. Mcllwain JT (1964) Receptive fields of optic tract axons and lateral geniculate cells. Peripheral extent and barbiturate sensitivity. J Neurophysiol 27:1154–1173

    Google Scholar 

  219. McKee S, Nakayama K (1984) The detection of motion in the peripheral visual field. Vision Res 24:25–32

    PubMed  CAS  Google Scholar 

  220. Merigan WH (1989) Chromatic and achromatic vision of the macaques: role of the P pathway.J Neurosci 9:776–783

    PubMed  CAS  Google Scholar 

  221. Merigan WH, Maunsell JHR (1993) How parallel are the primate visual pathways? Annu Rev Neurosci 16:369–402

    PubMed  CAS  Google Scholar 

  222. Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Shoppmann A, Zook JM (1984) Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 224:591–605

    PubMed  CAS  Google Scholar 

  223. Metzger W (1953) Gesetze des Sehens, 2nd edn. Kramer, Frankfurt/M

    Google Scholar 

  224. Metzger W (1961) Aporien der Psychophysik. In: Jung R, Kornhuber H (eds) Neurophysiologie und Psychophysik des visuellen Systems. Springer, Berlin, Heidelberg New York, pp 435–444

    Google Scholar 

  225. Michotte A (1963) The perception of causality. Methuen, London. Translation of: La perception de la causalité (1946) Institut Supérieur de Philosophie, Louvain

    Google Scholar 

  226. Millodot M, Johnson CA, Lamont A, Leibowitz HW (1975) Effect of dioptries on peripheral visual acuity. Vision Res 15:1357–1362

    PubMed  CAS  Google Scholar 

  227. Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two critical pathways. Trends Neurosci 6:414–417

    Google Scholar 

  228. Miyashita Y, Chang HS (1988) Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 331:68–70

    PubMed  CAS  Google Scholar 

  229. Mohn G, van Hof-van Duin J (1990) Development of spatial vision. In: Regan DM (ed) Vision and visual dysfunction. MacMillan, London, pp 179–211

    Google Scholar 

  230. Movshon A (1990) Visual processing of moving images. In: Barlow HB, Blakemore C, Weston-Smith M (eds) Images and understanding. Cambridge University Press, Cambridge, pp 122–137

    Google Scholar 

  231. Movshon JA, Adelson EH, Gizzi MS, Newsome WT (1985) The analysis of moving patterns. Exp Brain Res ll[Suppl]:117–151

    Google Scholar 

  232. Movshon JA, van Sluyters RC (1981) Visual neural development. Annu Rev Psychol 32:477–522

    PubMed  CAS  Google Scholar 

  233. Müller J (1826) Physiologie des Gesichtssinnes. Hölscher, Coblenz

    Google Scholar 

  234. Munk H (1890) Über die Funktionen der Großhirnrinde. Hirschwald, Berlin

    Google Scholar 

  235. Nelson JI (1975) Globality and stereoscopic fusion in binocular vision. J Theor Biol 49:1–88

    PubMed  CAS  Google Scholar 

  236. Nelson JI, Frost BJ (1978) Orientation-selective inhibition from beyond the classic visual receptive field. Brain Res 139:359–365

    PubMed  CAS  Google Scholar 

  237. Nelson JI, Salin PA, Munk MH-J, Arzi M, Bullier J (1992) Spatial and temporal coherence in cortico-cortical connections: a cross-correlation study in areas 17 and 18 of the cat. Vis Neurosci 9:21–38

    PubMed  CAS  Google Scholar 

  238. Newsome WT, Mikami A, Wurtz RH (1986) Motion selectivity in macaque visual cortex. III. Psychophysics and physiology of apparent motion. J Neurophysiol 55:1340–1351

    PubMed  CAS  Google Scholar 

  239. Nothdurft HC (1991) Texture segmentation and pop-out from orientation contrast. Vision Res 31:1073–1078

    PubMed  CAS  Google Scholar 

  240. Oehler R (1985) Spatial interactions in the rhesus monkey retina: a behavioral study using Westheimer paradigm. Exp Brain Res 59:217–225

    PubMed  CAS  Google Scholar 

  241. Orban GA, de Weerd P, Vandenbussche E (1990) Cats discriminate orientations of illusory contours. In: Stebbins WC, Berkley MA (eds) Comparative perception, vol II. Complex signals. Wiley, New York, pp 157–185

    Google Scholar 

  242. Palmer SE (1982) Symmetry, transformation, and the structure of perceptual systems. In: Beck J (ed) Organization and representation in perception. Erlbaum, Hillsdale, pp 95–107

    Google Scholar 

  243. Peichl L, Wässle H (1979) Size, scatter and coverage of ganglion cell receptive field centers in the cat retina. J Physiol (Lond) 291:265–266

    Google Scholar 

  244. Perret DI, Rolls ET, Caan W (1982) Visual neurons responsive to faces in the monkey temporal cortex. Exp Brain Res 47:329–342

    Google Scholar 

  245. Perry VH, Cowey A (1985) The ganglion cell and cone distributions in the monkey’s retina: implications for central magnification factors. Vision Res 25:1795–1810

    PubMed  CAS  Google Scholar 

  246. Peterhans E, von der Heydt R (1991) Subjective contours -bridging the gaps between psychophysics and physiology. Trends Neurosci 14:112–119

    PubMed  CAS  Google Scholar 

  247. Peterhans E, von der Heydt R (1991) Elements of form perception in monkey prestriate cortex. In: Gorea A, Frégnac Y, Kapoula Z, Findlay J (eds) Representations of vision: trends and tacit assumptions in vision reseach. Cambridge University Press, Cambridge, pp 111–124

    Google Scholar 

  248. Pettet MW, Gilbert CD (1992) Dynamic changes in receptive-field size in cat primary visual cortex. Proc Natl Acad Sci U S A 89:8366–8370

    PubMed  CAS  Google Scholar 

  249. Plateau J (1850) Vierte Notiz über eine neue, sonderbare Anwendung des Verweilens der Eindrücke auf der Netzhaut. Ann Physik Chem 80:287–292

    Google Scholar 

  250. Pöppel E, Held R, Frost D (1973) Residual visual function after brain wounds involving the central visual pathway in man. Nature 243:295–296

    PubMed  Google Scholar 

  251. Poggio GF, Fischer B (1977) Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J Neurophysiol 40:1392–1405

    PubMed  CAS  Google Scholar 

  252. Poggio P, Fahle M, Edelman S (1992) Fast perceptual learning in visual hyperacuity. Science 256:1018–1021

    PubMed  CAS  Google Scholar 

  253. Poppelreuter W (1917) Die Störungen der niederen und höheren Sehleistungen durch Verletzungen des Okzipitalhirns. Voss, Leipzig

    Google Scholar 

  254. Purkinje JE (1819) Beiträge zur Kenntnis des Sehens in subjektiver Hinsicht. Calve, Prague

    Google Scholar 

  255. Ramachandran VS (1988) Perception of shape from shading. Nature 331:163–166

    PubMed  CAS  Google Scholar 

  256. Ramachandran VS (1992) Perception: a biological perspective. In: Carpenter GA, Grossberg S (eds) Neural networks for vision image processing. MIT Press, Cambridge MA, pp 45–91

    Google Scholar 

  257. Ramachandran VS, Anstis SM (1983) Perceptual organization in moving patterns. Nature 304:529–531

    PubMed  CAS  Google Scholar 

  258. Ramachandran VS, Braddick O (1973) Orientation-specific learning in stereopsis. Perception 2:371–376

    PubMed  CAS  Google Scholar 

  259. Ramachandran VS, Gregory RL (1991) Perceptual filling in of artificially induced scotomas in human vision. Nature 350:699–702

    PubMed  CAS  Google Scholar 

  260. Ramachandran VS, Nelson JI (1976) Global grouping overrides point-to-point disparities. Perception 5:125–128

    PubMed  Google Scholar 

  261. Ransom-Hogg A, Spillmann L (1980) Perceptive field size in fovea and periphery of the light- and dark-adapted retina. Vision Res 20:221–228

    PubMed  Google Scholar 

  262. Ratliff F (1965) Mach bands: quantitative studies of neural networks in the retina. Holden-Day, San Francisco

    Google Scholar 

  263. Rauschecker JP (1991) Mechanisms of visual plasticity: Hebb synapses, NMDA receptors, and beyond. Physiol Rev 71:587–615

    PubMed  CAS  Google Scholar 

  264. Rauschecker JP, Singer W (1981) The effect of early visual experience on the cat’s visual cortex and their possible explanation by Hebb synapses. J Physiol (Lond) 310:215–239

    PubMed  Google Scholar 

  265. Redies C, Crook JM, Creutzfeldt OD (1986) Neuronal responses to borders with and without luminance gradients in cat visual cortex and dorsal geniculate nucleus. Exp Brain Res 61:469–481

    PubMed  Google Scholar 

  266. Regan D (1990) The perception of stereodepth and stereomotion: cortical mechanisms. In: Spillmann L, Werner JS (eds) Visual perception. The neurophysiological foundations. Academic, San Diego, pp 317–347

    Google Scholar 

  267. Rentschler I, Fiorentini A (1974) Meridional anisotropy of psychophysical spatial interaction. Vision Res 14:1467–1473

    PubMed  Google Scholar 

  268. Richards WA (1967) Motion detection in man and other animals. Brain Behav Evol 4:1–16

    Google Scholar 

  269. Richards WA (1970) Stereopsis and stereoblindness. Exp Brain Res 10:380–388

    PubMed  CAS  Google Scholar 

  270. Richards WA (1971) The fortification illusion of migraine. Sci Am 224:89–96

    Google Scholar 

  271. Riesen AH (1960) Effects of stimulus deprivation on the development and atrophy of the visual sensory system. Am J Orthopsychiatry 30:23–36

    Google Scholar 

  272. Robinson JO (1972) The psychology of visual illusion. Hutchinson, London

    Google Scholar 

  273. Rocha-Miranda CE, Bender DB, Gross CG, Mishkin M (1975) Visual activation of neurons in inferotemporal cortex depends on striate cortex and forebrain commissures. J Neurophysiol 38:475–491

    PubMed  Google Scholar 

  274. Rock I, Palmer S (1990) The legacy of Gestalt psychology. Sci Am 12:48–61

    Google Scholar 

  275. Rolls ET (1994) Brain mechanisms for invariant visual recognition and learning. Behav Proc 33:113–138

    Google Scholar 

  276. Rolls ET, Bayliss GC, Hasselmo ME, Nalva V (1989) The effect of learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey. Exp Brain Res 76:153–164

    Google Scholar 

  277. Ross WD (1931) The works of Aristotle. Parva naturalia. De somniis, vol III. Clarendon, Oxford

    Google Scholar 

  278. Rovamo J, Mäkelä P, Whitaker D (1993) Models of the visual cortex on the basis of psychophysical observations. In: Gulyas B, Ottoson D, Roland PE (eds) Functional organisation of the human visual cortex. Pergamon, Oxford

    Google Scholar 

  279. Rovamo J, Virsu V (1979) An estimation and application of the human cortical magnification factor. Exp Brain Res 37:495–510

    PubMed  Google Scholar 

  280. Rubin E (1915) Synsoplevede figurer. Glydendalske, Copenhagen

    Google Scholar 

  281. Sacks O (1993) To see or not to see. New Yorker 10:59–73

    Google Scholar 

  282. Salzman CD, Newsome WT (1994) Neural mechanisms for forming a perceptual decision. Science 264:231–237

    PubMed  Google Scholar 

  283. Salzman CD, Murasugi CM, Britten KH, Newsome WT (1992) Microstimulation in visual area MT: effects on direction discrimination performance. J Neurosci 12(6):2331–2355

    PubMed  Google Scholar 

  284. Sarris V (1989) Max Wertheimer on seen motion. Theory and evidence. Psychol Res 51:58–68

    PubMed  CAS  Google Scholar 

  285. Sary G, Vogels R, Orban GA (1993) Cue-invariant shape selectivity of macaque inferior temporal neurons. Science 260:995–997

    PubMed  Google Scholar 

  286. Scheerer E (1994) Psychoneural isomorphism: historical background and current relevance. Philos Psychol 7:183–210

    Google Scholar 

  287. Schein SJ, Desimone R (1990) Spectral properties of V4 neurons in the macaque. J Neurosci 10:3369–3389

    PubMed  Google Scholar 

  288. Schiller PH (1982) Central connections on the retinal ON-and OFF-pathways. Nature 297:580–583

    PubMed  CAS  Google Scholar 

  289. Schiller PH (1992) The ON and OFF channels of the visual system. Trends Neurosci 15:86–92

    PubMed  CAS  Google Scholar 

  290. Schiller PH (1995) On the specificity of neurons and visual areas. Behav Brain Res (in press)

    Google Scholar 

  291. Schiller PH, Sandell JH, Maunsell JHR (1986) Functions of the ON- and OFF-pathways channels of the visual system. Nature 322:824

    PubMed  Google Scholar 

  292. Schlykowa L, Ehrenstein WH (1993) Response times to visual motion: a correlation of VEP latencies and psychophysical reaction times. In: Eisner N, Heisenberg M (eds) Gene -brain — behaviour. Thieme, Stuttgart, p 438

    Google Scholar 

  293. Schneider GE (1967) Contrasting visuomotor functions of tectum and cortex in the golden hamster. Psychol Forsch 31:52–62

    PubMed  CAS  Google Scholar 

  294. Schneider GE (1969) Two visual systems: brain mechanisms for localization and discrimination are dissociated by tectal and cortical lesions. Science 163:895–902

    PubMed  CAS  Google Scholar 

  295. Schor CM, Tyler CW (1981) Spatio-temporal properties of Panum’s fusional area. Vision Res 21:683–692

    PubMed  CAS  Google Scholar 

  296. Schwartz EL (1980) Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding. Vision Res 20:645–669

    PubMed  CAS  Google Scholar 

  297. Schwartz EL (1984) Spatial mapping and spatial vision in primate striate and infero-temporal cortex. In: Spillmann L, Wooten BR (eds) Sensory experience, adaptation, and perception. Erlbaum, Hillsdale, pp 73–104

    Google Scholar 

  298. Schwartz EL (1994) Topographical mapping in primate visual cortex: history, anatomy and computation. In: Kelly DH (ed) Visual science and engineering: models and applications. Dekker, New York, pp 293–353

    Google Scholar 

  299. Schwartz EL, Christman DR, Wolf AP (1983) Human primary visual cortex topography imaged via positron-emission tomography. Brain Res 104:104–112

    Google Scholar 

  300. Shatz CJ (1990) Impulse activity and the patterning of connection during CNS-development. Neuron 5:745–756

    PubMed  CAS  Google Scholar 

  301. Sherrington CS (1906) The integrative action of the nervous system. Yale University Press, New Haven

    Google Scholar 

  302. Singer W (1989) Search for coherence: a basic principle of cortical self-organization. Concepts Neurosci 1:1–25

    Google Scholar 

  303. Singer W (1990) The formation of cooperative cell assemblies in the visual cortex. J Exp Biol 153:177–197

    PubMed  CAS  Google Scholar 

  304. Singer W (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55:349–374

    PubMed  CAS  Google Scholar 

  305. Singer W (1994) The putative role of synchrony in cortical processing. In: Eisner N, Breer H (eds) Sensory transduction (Otto Creutzfeldt lecture). Thieme, Stuttgart, pp 119–144

    Google Scholar 

  306. Singer W, Yinon U, Trettier F (1982) Central gating of developmental plasticity in kitten visual cortex. J Physiol (Lond) 324:221–237

    PubMed  CAS  Google Scholar 

  307. Sireteanu R, Rieth C (1992) Texture segregation in infants and children. Behav Brain Res 49:133

    PubMed  CAS  Google Scholar 

  308. Sperry RW (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci U S A 50:703–710

    PubMed  CAS  Google Scholar 

  309. Sperry RW, Miner N, Myers RE (1955) Visual pattern perception following subpial slicing and tantalum wire implantations in the visual cortex. J Comp Physiol Psychol 48:50–58

    PubMed  CAS  Google Scholar 

  310. Spillmann L (1994) The Hermann grid illusion: a tool for studying human perceptive field organization. Perception 23:691–708

    PubMed  CAS  Google Scholar 

  311. Spillmann L, Ransom-Hogg A, Oehler R (1987) A comparison of perceptive and receptive fields in man and monkeys. Hum Neurobiol 6:51–62

    PubMed  CAS  Google Scholar 

  312. Spillmann L, Werner JS (1990) Visual perception. The neurophysiological foundations. Academic, San Diego

    Google Scholar 

  313. Stadler M, Kruse P (1990) The self-organization perspective in cognition research: historical remarks and new experimental approaches. In: Haken H, Stadler M (eds) Synergetics of cognition. Springer, Berlin, Heidelberg New York, pp 32–51

    Google Scholar 

  314. Stoner GR, Albright TD (1992) Neural correlates of perceptual motion coherence. Nature 358:412–414

    PubMed  CAS  Google Scholar 

  315. Stratton W (1897) Vision without inversion of the retinal image. Psychol Rev 4:341–360

    Google Scholar 

  316. Stromeyer CF (1978) Form-color aftereffects in human vision. In: Held R, Leibowitz WH, Teuber H-L (eds) Handbook of sensory physiology: perception, vol VIII. Springer, Berlin Heidelberg New York, pp 97–142

    Google Scholar 

  317. Stryker MP (1991) Development of the visual system. MIT Press, Cambridge MA, pp 267–287

    Google Scholar 

  318. Stryker MP, Sherk H (1975) Modification of cortical orientation selectivity in the cat by restricted visual experience: a reexamination. Science 190:904–906

    PubMed  CAS  Google Scholar 

  319. Sur M, Garraghty PE, Roe AW (1988) Experimentally induced visual projections into auditory thalamus and cortex. Science 242:1437–1441

    PubMed  CAS  Google Scholar 

  320. Teller DY (1979) The forced-choice preferential looking procedure: a psychophysical technique for use with human infants. Inf Behav Dev 2:135–153

    Google Scholar 

  321. Teller DY (1984) Linking propositions. Vision Res 24:1233–1246

    PubMed  CAS  Google Scholar 

  322. Teller DY (1990) The domain of visual science. In: Spillmann L, Werner JS (eds) Visual perception. The neurophysiological foundations. Academic, San Diego, pp 11–21

    Google Scholar 

  323. Teller DY, Lindsey DT (1993) Motion at isoluminance — motion dead zones in 3-dimensional color space. J Opt Soc Am [A] 10:1324–1331

    CAS  Google Scholar 

  324. Teuber HL (1960) Perception. In: Field J, Magoun HW, Hall VE (eds) Handbook of physiology, section 1: neurophysiology, chap 65. American Physiological Society, Washington DC, pp 1595–1668

    Google Scholar 

  325. Teuber HL (1967) Wolfgang Köhler zum Gedenken (1887–1967). Psychol Forsch 31:VI–XIV

    PubMed  CAS  Google Scholar 

  326. Teuber HL (1978) The brain and human behavior. In: Held R, Leibowitz HW, Teuber HL (eds) Handbook of sensory physiology: perception, vol VIII. Springer, Berlin Heidelberg New York, pp 455–456

    Google Scholar 

  327. Teuber HL, Battersby NS, Bender MF (1960) Visual field defects after penetrating missile wounds of the brain. Harvard University Press, Cambridge

    Google Scholar 

  328. Thomas GJ, Stewart P (1957) The effect on visual perception of stimulating the brain with polarizing currents. Am J Psychol 70:528–540

    PubMed  CAS  Google Scholar 

  329. Thompson P (1980) Margaret Thatcher: a new illusion. Perception 9:483–484

    PubMed  CAS  Google Scholar 

  330. Thurston JB, Carraher RG (1966) Optical illusions and the visual arts. Van Nostrand-Reinhold, New York

    Google Scholar 

  331. Tootell R, Silverman M, DeValois RL (1981) Spatial frequency columns in primary visual cortex. Science 214:813–815

    PubMed  CAS  Google Scholar 

  332. Tootell R, Silverman M, Switkes E, DeValois RL (1982) Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science 218:902–904

    PubMed  CAS  Google Scholar 

  333. Treisman AM, Gormican S (1988) Feature analysis in early vision: evidence from search asymmetries. Psychol Rev 95:15–48

    PubMed  CAS  Google Scholar 

  334. Trevarthen CB (1968) Two mechanisms of vision in primates. Psychol Forsch 31:299–337

    PubMed  CAS  Google Scholar 

  335. Tyler CW (1987) Analysis of visual modulation sensitivity. III. Meridional variations in peripheral flicker sensitivity. J Opt Soc Am [A] 4:1612–1619

    CAS  Google Scholar 

  336. Tyler CW, Clarke MB (1990) The autostereogram. In: Merritt JO, Fisher SS (eds) Stereoscopic displays and applications, vol 1256. SPIE, Washington, pp 182–197

    Google Scholar 

  337. Tyler CW, Chan H, Lin L (1992) Different spatial tunings for ON and OFF pathway stimulation. Ophthal Physiol Opt 12:233–240

    CAS  Google Scholar 

  338. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Mansfield RJW, Goodale MS (eds) The analysis of visual behavior. MIT Press, Cambridge MA, pp 549–586

    Google Scholar 

  339. Uttal WR (1990) On some two way barriers between theories and mechanisms. Percept Psychophys 48:188–203

    PubMed  CAS  Google Scholar 

  340. Uttal WR (1993) Toward a new behaviorism. In: Masin SC (ed) Foundations of perceptual theory. Elsevier, Amsterdam, pp 3–42

    Google Scholar 

  341. Valberg A, Lee BB (1991) From pigments to perception. Advances in understanding visual processes. Plenum, New York

    Google Scholar 

  342. Valberg A, Lee BB, Kaiser PK, Kremers J (1992) Responses of macaque ganglion cells to movement of chromatic borders. J Physiol (Lond) 458:579–602

    PubMed  CAS  Google Scholar 

  343. van de Grind WA, Grüsser O-J, Lunkenheimer HU (1973) Fusion frequency of Gestalt properties. In: Jung R (ed) Central processing of visual information. Springer, Berlin Heidelberg (Handbook of sensory physiology, vol VII/3A) New York, pp 463–464

    Google Scholar 

  344. van de Grind WA, Koenderink JJ, van Doom AJ, Milders MV, Voerman H (1993) Inhomogeneity and anisotropics for motion detection in the monocular visual field of human observers. Vision Res 33:1089–1107

    PubMed  Google Scholar 

  345. Van Doom AJ, Koenderink JJ (1982) Temporal properties of the visual detectability of moving spatial white noise. Exp Brain Res 45:179–188

    Google Scholar 

  346. Van Essen DC (1985) Functional organization of primate visual cortex. In: Peters A, Jones EG (eds) Cerebral cortex, vol 3. Plenum, New York, pp 259–329

    Google Scholar 

  347. Van Essen DC, Anderson CH (1990) Reference frames and dynamic remapping processes in vision. In: Schwartz EJ (ed) Computational neuroscience. MIT Press, Cambridge MA, pp 278–294

    Google Scholar 

  348. Van Essen DC, Maunsell JHR (1983) Hierarchical organization and functional streams in the visual cortex. Trends Neurosci 6:370–375

    Google Scholar 

  349. Van Essen DC, Newsome WT, Maunsell JHR (1984) The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropics, and individual variability. Vision Res 24:429–448

    PubMed  Google Scholar 

  350. van Hof-van Duin J, Mohn G (1986) Visual field measurements, optokinetic nystagmus and the visual threatening response: normal and abnormal development. Doc Ophtahlmol Proc Ser 45:305–316

    Google Scholar 

  351. van Sluyters RC, Atkinson J, Banks MS, Held RM, Hoffmann KP, Shatz CJ (1990) The development of vision and visual perception. In: Spillmann L, Werner JS (eds) Visual perception. The neurophysiological foundations. Academic, San Diego, pp 349–379

    Google Scholar 

  352. Vautin RG, Berkley MA (1977) Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual affereffects. J Neurophysiol 40:1041–1065

    Google Scholar 

  353. Virsu V, Rovamo J (1979) Visual resolution, contrast sensitivity and cortical magnification factor. Exp Brain Res 37:475–494

    PubMed  CAS  Google Scholar 

  354. von der Heydt R (1987) Approaches to visual cortical function. Rev Physiol Biochem Pharm 108:69–105

    Google Scholar 

  355. von der Heydt R, Peterhans E (1989) Ehrenstein und Zöllner illusions in a neuronal theory of contour processing. In: Kulikowski JJ, Dickinson CM, Murray IJ (eds) Seeing contour and color. Pergamon, Oxford, pp 729–734

    Google Scholar 

  356. von der Heydt R, Peterhans E, Baumgartner G (1984) Illusory contours and cortical neuron responses. Science 224:1260–1262

    PubMed  Google Scholar 

  357. von der Heydt R, Peterhans E, Dürsteier MR (1992) Periodic-pattern selective cells in monkey visual cortex. J Neurosci 12:1416–1434

    PubMed  Google Scholar 

  358. von der Malsburg C (1973) Self-organization of orientation sensitive cells in the stiate cortex. Kybernetik 14:85–100

    PubMed  Google Scholar 

  359. von der Malsburg C, Buhmann J (1992) Sensory segmentation with coupled neural oscillators. Biol Cybern 67:233–242

    PubMed  Google Scholar 

  360. von Kries J (1905) Die Gesichtsempfindungen. In: Nagel W (ed) Handbuch der Physiologie des Menschen, vol 3. Vieweg, Braunschweig, pp 109–282

    Google Scholar 

  361. von Schiller P (1933) Stroboskopische Alternatiwersuche. Psychol Forsch 17:179

    Google Scholar 

  362. von Senden M (1932) Raum- und Gestaltauffassung bei operierten Blindgeborenen vor und nach der Operation. Barth, Leipzig

    Google Scholar 

  363. von Szily A (1918) Atlas der Kriegsaugenheilkunde. Enke, Stuttgart

    Google Scholar 

  364. Wade NJ (1994) A selective history of the study of visual motion aftereffects. Perception 23:1111–1134

    PubMed  CAS  Google Scholar 

  365. Wässle H, Peichl L, Boycott BB (1983) A spatial analysis of on- and off-ganglion cells in the cat retina. Vision Res 23:1151–1160

    PubMed  Google Scholar 

  366. Wässle H, Boycott BB, Illing R-B (1981) Morphology and mosaic of on- and off-beta cells in the cat retina and some functional consideration. Proc R Soc B 212:177–195

    Google Scholar 

  367. Wässle H, Grünert U, Röhrenbeck J, Boycott BB (1989) Cortical magnification factor and the ganglion cell density of the primate retina. Nature 341:643–646

    PubMed  Google Scholar 

  368. Wässle H, Grünert U, Röhrenbeck J, Boycott BB (1990) Retinal ganglion cell density and cortical magnification factor in the primate. Vision Res 30:1897–1911

    PubMed  Google Scholar 

  369. Weiskrantz L (1986) Blindsight. A case study and implications. Oxford University Press, Oxford

    Google Scholar 

  370. Welch L (1989) The perception of moving plaids reveals two-motion-processing sites. Nature 337:734–736

    PubMed  CAS  Google Scholar 

  371. Welch RB (1978) Perceptual modification: adapting to altered sensory environments. Academic, New York

    Google Scholar 

  372. Wertheimer M (1912) Experimentelle Studien über das Sehen von Bewegung. Z Psychol 61:161–265

    Google Scholar 

  373. Wertheimer M (1923) Untersuchungen zur Lehre von der Gestalt II. Psychol Forsch 4:301–350

    Google Scholar 

  374. Wertheimer M (1938) Laws of organization of perceptual form. In: Ellis WH (ed) Source book of Gestalt psychology. Routledge, New York, pp 71–88

    Google Scholar 

  375. Wertheimer M Jr (1961) Psycho-motor coordination of auditory-visual space at birth. Science 134:1692

    PubMed  CAS  Google Scholar 

  376. Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 28:1041–1059

    Google Scholar 

  377. Wilbrand H (1887) Die Seelenblindheit als Herderscheinung und ihre Beziehungen zur homonymen Hemianopsie. Bergmann, Wiesbaden

    Google Scholar 

  378. Wilde K (1950) Der Punktreiheneffekt und die Rolle der binokularen Querdisparation beim Tiefensehen. Psychol Forsch 23:223–262

    Google Scholar 

  379. Williams DR (1988) Topography of the foveal cone mosaic in the living human eye. Vision Res 28:433–454

    PubMed  CAS  Google Scholar 

  380. Wilson HR, Levi D, Maffei L, Rovamo J, DeValois R (1990) The perception of form: retina to striate cortex. In: Spillmann L, Werner JS (eds) Visual Perception: the neurophysiolgical foundations. Academic, San Diego, pp 231–272

    Google Scholar 

  381. Wist ER, Ehrenstein WH (1992) Evoked potential and psychophysical correlates of visual motion processing. Int J Psychol 27(3/4):14

    Google Scholar 

  382. Wist ER, Gross JD, Niedeggen M (1994) Motion aftereffects with random-dot chequer-board kinematograms: relation between psychophysical and VEP measures. Perception 23:1155–1162

    PubMed  CAS  Google Scholar 

  383. Wohlfahrt E (1932) Der Auffassungsvorgang an kleinen Gestalten. Ein Beitrag zur Psychologie des Vorge-stalterlebnisses. Neue Psychol Stud 4:347–415

    Google Scholar 

  384. Wolpert I (1924) Die Simultanagnosie: Störung der Gesamtauffassung. Z Ges Neurol Psychiatr 93:397–415

    Google Scholar 

  385. Zeki S (1978) Functional specialisation in the visual cortex of the rhesus monkey. Nature 274:423–428

    PubMed  CAS  Google Scholar 

  386. Zeki S (1980) The representation of colors in the cerebral cortex. Nature 284:412–418

    PubMed  CAS  Google Scholar 

  387. Zeki S (1993) A vision of the brain. Blackwell Scientific, Oxford

    Google Scholar 

  388. Zeki SM (1991) Cerebral akinetopsia (visual motion blindness). Brain 114:811–824

    PubMed  Google Scholar 

  389. Zihl J (1984) Subkortikale Funktionen der visuellen Wahrnehmung. In: Spillmann L, Wooten BR (eds) Sensory experience, adaptation, and perception. Erlbaum, Hillsdale, pp 695–716

    Google Scholar 

  390. Zihl J, von Cramon D (1986) Zerebrale Sehstörungen. Kohlhammer, Stuttgart

    Google Scholar 

  391. Zihl J, von Cramon D, Mai N (1983) Selective disturbance of movement vision after bilateral brain damage. Brain 106:313–340

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spillmann, L., Ehrenstein, W.H. (1996). From Neuron to Gestalt: Mechanisms of Visual Perception. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics