Skip to main content

Auditory-Visual Interaction in the Superior Colliculus

  • Chapter
Comprehensive Human Physiology

Abstract

Perception of our world requires coordination of information from sensory and motoric systems. The three most important sources of sensory information are the ears, the eyes and the skin. Information from the peripheral organs are encoded in different parts of the brain, using different cues to define and locate an object in space. Objects are located acoustically by interaural time and intensity differences, visually by the locus of retinal activity, head and eye position, and somatosensorially by the locus of tactile sensations on the surface of the body. In order that acoustic, visual and tactile objects may be recognized as a single entity, information from the sensory systems must be combined. Moreover, sensory integration usually results in motoric responses, such as movement of the head, eyes, pinnae or limbs. Since all eye movements, for example, are mediated by the same population of motoneurons, sensory integration should entail transformation of different sensory coordinates into a common coordinate system (cf. Chaps. 48, 52).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldi P, Heiligenberg W (1988) How sensory maps could enhance resolution through ordered arrangements of broadly tuned receivers. Biol Cybern 59:313–318

    Article  PubMed  CAS  Google Scholar 

  2. Clarey JC, Irvine DRF (1986) Auditory response properties of neurons in the anterior ectosylvian sulcus of the cat. Brain Res 386:12–19

    Article  PubMed  CAS  Google Scholar 

  3. Clemo HR, Stein BE (1984) Topographic organization of somatosensory corticotectal influences in cat. J Neurophysiol 51:843–858

    PubMed  CAS  Google Scholar 

  4. Edwards SB, Ginsburgh CL, Henkel CK, Stein BE (1979) Sources of subcortical projections to the superior colliculus in the cat. J Comp Neurol 184:309–330

    Article  PubMed  CAS  Google Scholar 

  5. Gordon B (1973) Receptive fields in deep layers of cat superior colliculus. J Neurophysiol 36:157–178

    PubMed  CAS  Google Scholar 

  6. Jay MF, Sparks DL (1986) Auditory receptive fields in primate superior colliculus shift with changes in eye position. Nature 309:345–347

    Article  Google Scholar 

  7. Jay MF, Sparks DL (1987a) Sensorimotor integration in the primate superior colliculus. I. Motor convergence. J Neurophysiol 57:22–34

    PubMed  CAS  Google Scholar 

  8. Jay MF, Sparks DL (1987b) Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. J Neurophysiol 57:35–55

    PubMed  CAS  Google Scholar 

  9. King AJ, Hutchings ME (1987) Spatial response properties of acoustically responsive neurons in the superior colliculus of the ferret: a map of auditory space. J Neurophysiol 57:596–624

    PubMed  CAS  Google Scholar 

  10. King AJ, Palmer AR (1983) Cells responsive to free-field auditory stimuli in guinea-pig superior colliculus: Distribution and response properties. J Physiol (Lond) 342:361–381

    PubMed  CAS  Google Scholar 

  11. King AJ, Palmer AR (1985) Integration of visual and auditory information in bimodal neurones in the guinea-pig superior colliculus. Exp Brain Res 60:492–500

    Article  PubMed  CAS  Google Scholar 

  12. Knudsen EI (1982) Auditory and visual maps of space in the optic tectum of the owl. J Neuroscience 2:1177–1194

    CAS  Google Scholar 

  13. Knudsen EI, Knudsen PF (1989) Vision calibrates sound localization in developing barn owls. J Neuroscience 9:3306–3313

    CAS  Google Scholar 

  14. Knudsen EI, Knudsen PF (1990) Sensitive and critical periods for visual calibration of sound localization by barn owls. J Neurosci 19:222–232

    Google Scholar 

  15. Lee C, Rohrer WH, Sparks DL (1988) Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332:357–360

    Article  PubMed  CAS  Google Scholar 

  16. Mays LE, Sparks DL (1980) Saccades are spatially, not retinocentrically, coded. Science 208:1163–1165

    Article  PubMed  CAS  Google Scholar 

  17. Meredith MA, Clemo HR (1989) Auditory cortical projection from the anterior ectosylvian sulcus (field AES) to the superior colliculus in the cat: an anatomical and electrophysiological study. J Comp Neurol 289:687–707

    Article  PubMed  CAS  Google Scholar 

  18. Meredith MA, Stein BE (1986) Spatial factors determine the activity of multisensory neurons in cat superior colliculus. Brain Res 365 (1986) 350–354

    Article  PubMed  CAS  Google Scholar 

  19. Meredith MA, Stein BE (1990) The visuotopic component of the multisensory map in the deep laminae of the cat superior colliculus. J Neurosci 10:3727–3742

    PubMed  CAS  Google Scholar 

  20. Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci 7:3215–3229

    PubMed  CAS  Google Scholar 

  21. Meredith MA, Wallace MT, Stein BE (1992) Visual, auditory and somatosensory convergence in output neurons of the cat superior colliculus: multisensory properties of the tectoreticulo-spinal projection. Exp Brain Res 88:181–186

    Article  PubMed  CAS  Google Scholar 

  22. Middlebrooks JC, Knudsen EI (1984) A neural code for auditory space in the cat’s superor colliculus. J Neurosci 4:2621–2634

    PubMed  CAS  Google Scholar 

  23. Moschovakis AK, Karabelas AB, Highstein SM (1988) Structure-function relationships in the primate superior colliculus. I. Morphological classification of efferent neurons. J Neurophysiol 60:232–262

    PubMed  CAS  Google Scholar 

  24. Ogasawara K, McHaffie JG, Stein BE (1984) Two visual corticotectal systems in cat. J Neurophysiol 52:1226–1245

    PubMed  CAS  Google Scholar 

  25. Palmer AR, King AJ (1982) The representation of auditory space in the mammalian superior colliculus. Nature 299:248–249

    Article  PubMed  CAS  Google Scholar 

  26. Palmer AR, King AJ (1985) A monaural space map in the guinea-pig superior colliculus. Hear Res 17:267–280

    Article  PubMed  CAS  Google Scholar 

  27. Peck CK (1987) Visual-auditory interactions in cat superior colliculus: their role in the control of gaze. Brain Res 420:162–166

    Article  PubMed  CAS  Google Scholar 

  28. Rhoades RW, Mooney RD, Rohrer WH, Nikoletseas MM, Fish SE (1989) Organization of the projection from the superficial to the deep layers of the hamster’s superior colliculus as demonstrated by the anterograde transport of phaseolus vulgaris leucoagglutinin. J Comp Neurol 283:54–70

    Article  PubMed  CAS  Google Scholar 

  29. Robinson DA (1972) Eye movements evoked by collicular stimulation in the alert monkey. Vision Res 12:1795–1808

    Article  PubMed  CAS  Google Scholar 

  30. Sparks DL (1986) Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiol Rev 66:118–171

    PubMed  CAS  Google Scholar 

  31. Sparks DL, Nelson JS (1987) Sensory and motor maps in the mammalian superior colliculus. TINS 10:312–317

    Google Scholar 

  32. Stein BE, Meredith MA (1990) Multisensory integration. Ann N Y Acad Sci 608:51–65

    Article  PubMed  CAS  Google Scholar 

  33. Wise LZ, Irvine DRF (1983) Auditory response properties of neurons in deep layers of cat superior colliculus. J Neurophysiol 49:674–685

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gummer, A.W., Plinkert, P., Zenner, HP. (1996). Auditory-Visual Interaction in the Superior Colliculus. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics