Skip to main content

Abstract

Five Sensory Organs in the Vestibular Apparatus of the Inner Ear. The vestibular sensory organs enable humans to walk upright. The five most important end organs for spatial orientation and motion sensation are located in the labyrinth of the inner ear (Fig. 34.1). These are the vestibular organs. Healthy people are usually unaware of the normal functioning of their vestibular organs. However, any functional disorder is experienced dramatically as vertigo, dizziness, or even an inability to stand upright.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baird RA, Desmadryl G, Fernández C, Goldberg JM (1988) The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. J Neurophysiol 60:182–203

    PubMed  CAS  Google Scholar 

  2. Barany R (1906) Untersuchungen über den vom Vestibularapparat des Ohres reflektorisch ausgelösten rhythmischen Nystagmus und seine Begleiterscheinungen. Coblentz

    Google Scholar 

  3. Becker W, Naumann HH, Pfaltz CR (1986) Hals-Nasen-Ohren Heilkunde. Thieme, Stuttgart, p 61

    Google Scholar 

  4. Corey DP, Hudspeth AJ (1979a) Ionic basis of the receptor potential in vertebrate hair cells. Nature 281:675–677

    Article  PubMed  CAS  Google Scholar 

  5. Corey DP, Hudspeth AJ (1979b) Response latency of vertebrate hair cells. Biophys J 26:499–506

    Article  PubMed  CAS  Google Scholar 

  6. Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3:962–976

    PubMed  CAS  Google Scholar 

  7. Curthoys IS (1982) The response of primary horizontal semicircular canal neurons in the rat and guinea pig to angular acceleration. Exp Brain Res 47:286–294

    PubMed  CAS  Google Scholar 

  8. Didier A, Decory L, Cazals Y (1990) Evidence for potassium-induced motility in type I vestibular hair cells in the guinea pig. Hear Res 46:171–176

    Article  PubMed  CAS  Google Scholar 

  9. Estes MS, Blanks RHI, Markham CH (1975) Physiologic characteristics of vestibular first-order canal neurons in the cat. I. Response plane determination and resting discharge characteristics. J Neurophysiol 38:1232–1249

    PubMed  CAS  Google Scholar 

  10. Fernández C, Baird RA, Goldberg JM (1988) The vestibular nerve of the chinchilla. I. Peripheral innervation patterns in the horizontal and superior semicircular canals. J Neurophysiol 60:167–181

    PubMed  Google Scholar 

  11. Fernández C, Goldberg JM, Baird RA (1990) The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula. J Neurophysiol 63:767–780

    PubMed  Google Scholar 

  12. Gacek RR, Lyon M (1974) The localization of vestibular efferent neurons in the kitten with horseradish peroxidase. Acta Otolaryngol (Stokh) 77:92–101

    Article  CAS  Google Scholar 

  13. Goldberg JM (1991) The vestibular end organs. Curr Opin Biol 1:229–235

    CAS  Google Scholar 

  14. Goldberg JM, Fernández C (1980) Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity. J Neurophysiol 43:986–1025

    PubMed  CAS  Google Scholar 

  15. Goldberg JM, Lysakowski A, Fernández C (1990a) Morphophysiological and ultrastructural studies in the mammalian cristae ampullares. Hear Res 49:89–102

    Article  PubMed  CAS  Google Scholar 

  16. Goldberg JM, Desmadryl G, Baird RA, Fernández C (1990b) The vestibular nerve of the chinchilla. IV. Discharge properties of utricular afferents. J Neurophysiol 63:781–790

    PubMed  CAS  Google Scholar 

  17. Goldberg JM, Desmadryl G, Baird RA, Fernández C (1990c) The vestibular nerve of the chinchilla. V. Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. J Neurophysiol 63:791–804

    PubMed  CAS  Google Scholar 

  18. Hilding D, Wersäll J (1962) Cholinesterase and its relation to the nerve endings in the inner ear. Acta Otolaryngol (Stockh) 55:205–217

    Article  CAS  Google Scholar 

  19. Howard J, Hudspeth AJ (1987) Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction of the bullfrog’s saccular hair cell. Proc Natl Acad Sci U S A 84:3064–3068

    Article  PubMed  CAS  Google Scholar 

  20. Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1:189–199

    Article  PubMed  CAS  Google Scholar 

  21. Howard J, Roberts WM, Hudspeth AJ (1988) Mechanoelectrical transduction by hair cells. Annu Rev Biophys Biophys Chem 17:99–124

    Article  PubMed  CAS  Google Scholar 

  22. Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404

    Article  PubMed  CAS  Google Scholar 

  23. Hudspeth AJ, Jacobs R (1979) Stereocilia mediate transduction in vertebrate hair cells. Proc Natl Acad Sci USA 76:1506–1509

    Article  PubMed  CAS  Google Scholar 

  24. Lim D (1971) Vestibular sensory organs: a scanning electron microscopic investigation. Arch Otolaryngol 94:69–76

    Article  PubMed  CAS  Google Scholar 

  25. Lindemann HH, Reith A, Winther FO (1981) The distribution of type I and type II cells in the cristate ampullares of the guinea pig. Acta Otolaryngol (Stockh) 92:315–321

    Article  Google Scholar 

  26. Osborne MP, Comis SD, Pickles JO (1988) Further observations on the fine structure of tip links between stereocilia of the guinea pig cochlea. Hear Res 35:99–108

    Article  PubMed  CAS  Google Scholar 

  27. Pickles JO, Comis SD, Osborne MP (1984) Cross links between stereocilia in the guinea pig organ of Corti and their possible relation to sensory transduction. Hear Res 15:103–112

    Article  PubMed  CAS  Google Scholar 

  28. Pickles JO, Corey DP (1992) Mechanoelectrical transduction by hair cells. TINS 15:254–259

    PubMed  CAS  Google Scholar 

  29. Rennie KJ, Ashmore JF (1991) Ionic currents in isolated vestibular hair cells from the guinea-pig crista ampullaris. Hear Res 51:279–292

    Article  PubMed  CAS  Google Scholar 

  30. Rüsch A, Thürm U (1989) Cupula displacement, hair bundle deflection, and physiological responses in the transparent semicircular canal of young eel. Pflügers Arch 413:533–545

    Article  PubMed  Google Scholar 

  31. Sans A, Brehier A, Moniot B, Thomasset M (1987) Immunoelectron microscopic localisation of “vitamin D-dependent” calcium-binding protein (CaBP-28K) in the vestibular cells of the cat. Brain Res 435:293–304

    Article  PubMed  CAS  Google Scholar 

  32. Scarfone E, Dememes D, Jahn R, De Camilli P, Sans A (1988) Secretory function of the vestibular nerve calyx suggested by presence of vesicles, synapsin I, and synaptophysin. J Neurosci 8:4640–4645

    PubMed  CAS  Google Scholar 

  33. Scarfone E, Ulfendahl M, Löfstrand P, Flock Å (1991) Light-and electron microscopy of isolated vestibular hair cells from the guinea pig. Cell Tissue Res 26:51–58

    Article  Google Scholar 

  34. Scherer H, Clarke AH (1987) Thermal stimulation of the vestibular labyrinth during orbital flight. Arch Otorhinolaryngol 244:159–166

    Article  PubMed  CAS  Google Scholar 

  35. Schneider LW, Anderson DJ (1976) Transfer characteristics of first and second order lateral canal vestibular neurons in gerbil. Brain Res 112:61–76

    Article  PubMed  CAS  Google Scholar 

  36. Smith CA, Rasmussen GL (1968) Nerve endings in the maculae and cristae of the chinchilla vestibule, with special reference to the efferents. In: Third symposium on the role of the vestibular organs in space exploration. National aeronautics space administration, Washington DC; SP 152, pp 183–201

    Google Scholar 

  37. Smith CE, Goldberg JM (1986) A stochastic afterhyperpolarization model of repetitive activity in vestibular afferents. Biol Cybern 54:41–51

    Article  PubMed  CAS  Google Scholar 

  38. Tomko DL, Peterka RJ, Schor RH, O’Leary DP (1981) Response dynamics of horizontal canal afferents in barbiturate-anesthetized cats. J Neurophysiol 45:376–396

    PubMed  CAS  Google Scholar 

  39. von Baumgarten R, Benson A, Berthoz A, Brandt T, Brand U, Bruzek W, Dichgans J, Kass J, Probst T, Scherer H, Vieville T, Vogel H, Wetzig J (1984) Effects of rectilinear acceleration and optokinetic and caloric stimulations in space. Science 225:208–212

    Article  Google Scholar 

  40. Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161:159–182

    Article  PubMed  CAS  Google Scholar 

  41. Wersäll J (1956) Studies on the structure and innervation of the sensory epithelium of the cristae ampullares in the guinea pig. Acta Otolaryngol Suppl (Stockh) 126:1–85

    Google Scholar 

  42. Wiederholot ML, Kiang NYS (1970) Effect of electircal stimulation of the crossed olivocochlear bundle on single auditory-nerve fibres in the cat. J Acoust Soc Am 48:950–965

    Article  Google Scholar 

  43. Yagi T, Simpson NE, Markham CH (1977) The relationship of conduction velocity to other physiological properties of the cat’s horizontal canal neurons. Exp Brain Res 30:587–600

    Article  PubMed  CAS  Google Scholar 

  44. Young LR, Oman CM, Watt DGD, Money KE, Lichtenberg BK (1984) Spatial orientation in weightlessness and readaptation to earth’s gravity. Science 225:205–208

    Article  PubMed  CAS  Google Scholar 

  45. Zenner HP, Zimmermann U, Gitter AH (1990) Cell potential and motility of isolated mammalian vestibular sensory cells. Hear Res 50:289–294

    Article  PubMed  CAS  Google Scholar 

  46. Zenner H-P, Zimmermann U (1991) Motile responses of vestibular hair cells following caloric, electrical or chemical stimuli. Acta Otolaryngol (Stockh) 111:291–297

    Article  CAS  Google Scholar 

  47. Zenner H-P, Reuter G, Hong S, Zimmermann U, Gitter AH (1992) Electrically evoked motile responses of mammalian type I vestibular hair cells. J Vestib Res 2:181–191

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zenner, HP., Gummer, A.W. (1996). The Vestibular System. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics