Skip to main content

The Generation of Electric and Magnetic Signals of the Brain by Local Networks

  • Chapter
Comprehensive Human Physiology

Abstract

The general concept of this chapter is that processing of information in the brain involves the activity of multiple neuronal networks that form dynamic assemblies of neurons organized in parallel. The occurrence of oscillations or rhythmic activities in these networks is a paramount feature of these functional assemblies. Therefore, we will examine in general terms the main aspects of the physiology and biophysics of neuronal networks of the brain, i.e., the basic principles that have to be taken into account when interpreting the behavior of the signals generated by the networks in space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen P, Andersson SA (1968) Thalamic origin of cortical rhythmic activity. In: Creutzfeldt O (ed) The neuronal generation of the EEG. Handbook of electroencephalography and clinical neurophysiology, vol 2c. Elsevier, Amsterdam, pp 90–118

    Google Scholar 

  2. Apostol G, Creutzfeldt OD (1974) Cross correlation between the activity of septal units and hippocampal EEG during arousal. Brain Res 67:65–75

    PubMed  CAS  Google Scholar 

  3. Arezzo J, Legatt AD, Vaughan HG Jr (1979) Topography and intracranial sources of somatosensory evoked potentials in the monkey. I. Early components. Electroencephalogr Clin Neurophysiol 46:155–172

    PubMed  CAS  Google Scholar 

  4. Arnolds DEAT, Lopes da Silva FH, Aitink JW, Kamp A, Boeijinga P (1980) The spectral properties of hippocampal EEG related to behavior in man. Electroencephalogr Clin Neurophysiol 50:324–328

    PubMed  CAS  Google Scholar 

  5. Assaf SY, Miller JJ (1978) The role of a raphe serotonin system in the control of septal unit activity and hippocampal desynchronization. Neuroscience 3:539–550

    PubMed  CAS  Google Scholar 

  6. Babloyantz A, Destexge A (1986) Low dimensional chaos in an instance of epilepsy. Proc Natl Acad Sci USA 83:3513

    PubMed  CAS  Google Scholar 

  7. Babloyantz A, Nicolis C, Salazar M (1985) Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys Lett [A] 111:152–156

    Google Scholar 

  8. Basar E (1992) Brain natural frequencies are causal factors for resonances and induced rhythms. In: Basar E, Bullock TH (eds) Induced rhythms in the brain. Birkhäuser, Boston, pp 425–467

    Google Scholar 

  9. Başar E, Gönder A, Ungan P (1976a) Important relation between EEG and brain evoked potentials. I. Resonance phenomena in subdural structures of the cat brain. Biol Cybern 25:27–40

    PubMed  Google Scholar 

  10. Başar E, Gönder A, Ungan P (1976b) Important relation between EEG and brain evoked potentials. II. A systems analysis of electrical signals from the human brain. Biol Cybern 25:41–48

    PubMed  Google Scholar 

  11. Başar R, Başar-Eroglu C, Parnefjord R, Rahn E, Schürmann M (1992) Evoked potentials: ensembles of brain induced rhythmicities in the alpha, theta and gamma ranges. In: Basar E, Bullock TH (eds) Induced rhythms in the brain. Birkhäuser, Boston, pp 155–181

    Google Scholar 

  12. Becker CJ, Freeman WJ (1968) Prepyriform electrical activity after loss of peripheral or central input or both. Physiol Behav 3:597–599

    Google Scholar 

  13. Boeijinga PH, Lopes da Silva FH (1989) Modulations of EEG activity in the entorhinal cortex and forebrain olfactory areas during odour sampling. Brain Res 478:257–268

    PubMed  CAS  Google Scholar 

  14. Boeijinga PH, Pennartz CMA, Lopes da Silva FH (1990) Paired-pulse facilitation in the nucleus accumbens following stimulation of subicular inputs in the rat. Neuroscience 35:301–311

    PubMed  CAS  Google Scholar 

  15. Bouyer JJ, Tilquin C, Rougeul A (1983) Thalamic rhythms in cat during quiet wakefulness and immobility. Electroencephalogr Clin Neurophysiol 55:180–187

    PubMed  CAS  Google Scholar 

  16. Bouyer JJ, Montaron MF, Vahnée JM, Albert MP, Rougeul A (1987) Anatomical localization of cortical beta rhythms in cat. Neurosci 22:863–869

    CAS  Google Scholar 

  17. Braitenberg V (1977) On the texture of brains. Springer, Berlin Heidelberg New York

    Google Scholar 

  18. Braitenberg V, Schiiz A (1991) Anatomy of the cortex. Springer, Berlin Heidelberg New York

    Google Scholar 

  19. Bremer F, Stoupel N, Van Reeth PC (1960) Nouvelles recherches sur la facilitation et l’inhibition des potentiels évoqués corticaux dans l’éveil réticulaire. Arch Ital Biol 98:229–247

    Google Scholar 

  20. Bressler SL (1990) The gamma wave: a cortical information carrier? Trends Neurosci 13:161–162

    PubMed  CAS  Google Scholar 

  21. Bressler SL, Freeman WJ (1980) Frequency analysis of olfactory system in cat, rabbit, and rat. Electroencephalogr Clin Neurophysiol 50:19–24

    PubMed  CAS  Google Scholar 

  22. Buzsáki G, Grastyàn E, Czopf J, Kellènyi L, Prohaska O (1981) Changes in neuronal transmission in the rat hippocampus during behavior. Brain Res 225:235–247

    PubMed  Google Scholar 

  23. Buzsáki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis and thalamic control of neo-cortical activity in the freely moving rat. J Neurosci 8:4007–4026

    PubMed  Google Scholar 

  24. Chagnac-Amitai Y, Connors BW (1989) Synchronized excitation and inhibition driven by intrinsically-bursting neurons in neocortex. J Neurophysiol 62:1149–1162

    PubMed  CAS  Google Scholar 

  25. Chatila M, Milleret C, Buser P, Rougeul A (1992) A 10 Hz “alpha-like” rhythm in the visual cortex of the waking cat. Electroencephalogr Clin Neurophysiol 82:217–222

    Google Scholar 

  26. Chow KL, Leiman AL (1970) Aspects of the structural and functional organization of the neocortex. Neurosci Res Prog Bull 8:157–183

    CAS  Google Scholar 

  27. Crowne DP, Radcliffe DD (1975) Some characteristics and functional relations of the electrical activity of the primate hippocampus and hypotheses of hippocampal function. In: Isaacson RL, Pribram KH (eds) The hippocampus, vol 2. Plenum, New York, pp 185–203

    Google Scholar 

  28. De France J, Sheer DE (1988) Focused arousal, 40Hz EEG and motor programming. In: Giannitrapani D, Murri L (eds) The EEG of mental activities. Karger, Basel, pp 153–168

    Google Scholar 

  29. Delaney KR, Gelperin AM, Fee MS, Flores JA, Gervais R, Tank DW, Kleinfeldt D (1994) Waves and stimulus-modulated dynamics in an oscillating olfactory network. Proc Natl Acad Sci USA 91:669–673

    PubMed  CAS  Google Scholar 

  30. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations, a mechanism of feature linking in the visual cortex? Biol Cybern 60:121–130

    PubMed  CAS  Google Scholar 

  31. Eckhorn R, Schanze T, Brosch M, Salem W, Bauer R (1992) Stimulus-specific synchronizations in cat visual cortex: multiple microelectrode and correlation studies from several cortical areas. In: Basar E, Bullock TH (eds) Induced rhythms in the brain. Birkhäuser, Boston, pp 47–80

    Google Scholar 

  32. Eeckman FH, Freeman WJ (1990) Correlations between unit firing and EEG in the rat olfactory system. Brain Res 528:238–244

    PubMed  CAS  Google Scholar 

  33. Freeman WJ (1972) Measurement of open-loop responses to electrical stimulation in olfactory bulb of cat. J Neurophysiol 35:745–761

    PubMed  CAS  Google Scholar 

  34. Freeman WJ (1975) Mass action in the nervous system. Academic, New York

    Google Scholar 

  35. Freeman WJ (1987) Techniques used in the search for the physiological basis of the EEG. In: Gevins AS, Remond A (eds) Handbook of electroencephalography and clinical neurophysiology, vol 3A. Elsevier, Amsterdam

    Google Scholar 

  36. Freeman WJ (1992) Predictions in neocortical dynamics derived from studies in paleocortex. In: Basar E, Bullock TH (eds) Induced rhythms in the brain. Birkhäuser, Boston, pp 183–199

    Google Scholar 

  37. Freeman WJ, Skarda CA (1985) Spatial EEG patterns, nonlinear dynamics and perception: the neo-Sherringtonian view. Brain Res Rev 10:147–175

    Google Scholar 

  38. Freeman WJ, Van Dijk BW (1988) Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey. Brain Res 422:267–276

    Google Scholar 

  39. Freeman WJ, Viana di Prisco G (1986) Relation of olfactory EEG to behavior: time series analysis. Behav Neurosci 100:753–763

    PubMed  CAS  Google Scholar 

  40. Gastaut H (1952) Etude électroencéphalographique de la réactivité des rhythmes rolandiques. Rev Neurol (Paris) 87:176–182

    CAS  Google Scholar 

  41. Gaztelu JM, Buño W (1982) Septo-hippocampal relationships during the EEG theta rhythm. Electroencephalogr Clin Neurophysiol 54:375–387

    PubMed  CAS  Google Scholar 

  42. Giaquinto S (1973) Sleep recordings from limbic structures in man. Confin Neurol 35:285–303

    PubMed  CAS  Google Scholar 

  43. Glass L, Mackey MC (1988) From clocks to chaos: the rhythm of life. Princeton University Press, Princeton, NJ, p 248.

    Google Scholar 

  44. Glenn LL, Steriade M (1982) Discharge rate and excitability of cortically projecting intralaminar thalamic neurons during waking and sleep states. J Neurosci 2:1387–1404

    PubMed  CAS  Google Scholar 

  45. Gray CM, Freeman WJ, Skinner JE (1986) Chemical dependencies of learning in the rabbit olfactory bulb: acquisition of the transient spatial-pattern change depends on norepinephrine. Behav Neurosci 100:585–596

    PubMed  CAS  Google Scholar 

  46. Gray CM, Koenig P, Engel KA, Singer W (1988) Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties. Nature 338:334–337

    Google Scholar 

  47. Gray CM, Engel AK, Konig P, Singer W (1990) Stimulus-dependent neuronal oscillations in cat visual cortex: receptive field properties and feature dependence. Eur J Neurosci 2:607–619

    PubMed  Google Scholar 

  48. Gray CM, Engel AK, König P, Singer W (1992) Mechanisms underlying the generations of neuronal oscillations in cat visual cortex. In: Basar E, Bullock TH (eds) Induced rhythms in the brain. Birkhäuser, Boston, pp 29–45.

    Google Scholar 

  49. Green JD, Arduini A (1954) Hippocampal electrical activity in arousal. J Neurophysiol 17:533–557

    PubMed  CAS  Google Scholar 

  50. Haberly LB, Shepherd GM (1973) Current-density analysis of summed potentials in opossum prepyriform cortex. J Neurophysiol 36:789–802

    PubMed  CAS  Google Scholar 

  51. Habets AMMC, Lopes da Silva FH, Mollevanger WJ (1980) An olfactory input to the hippocampus of the cat: field potential analysis. Brain Res 182:47–64

    PubMed  CAS  Google Scholar 

  52. Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography — theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Google Scholar 

  53. Hari R (1993) Magnetoencephalography as a tool of clinical neurophysiology. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography. Basic principles, clinical applications, and related fields. Williams and Wilkins, Baltimore, pp 1035–1061

    Google Scholar 

  54. Hu B, Steriade M, Deschênes M (1989) The effects of brainstem peribrachial stimulation on perigeniculate neurons: the blockage of spindle waves. Neuroscience 31:1–12

    PubMed  CAS  Google Scholar 

  55. Jackson JD (1962) Classical electrodynamics. Wiley, New York

    Google Scholar 

  56. Jahnsen H, Llinás R (1984a) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol (Lond) 349:205–226

    CAS  Google Scholar 

  57. Jahnsen H, Llinás R (1984b) Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol (Lond) 349:227–247

    CAS  Google Scholar 

  58. Klee M, Rall W (1977) Computed potentials of cortically arranged populations of neurons. J Neurophysiol 40:647–666

    PubMed  CAS  Google Scholar 

  59. Konopacki J, Bland BH, MacIver MB, Roth SH (1987a) Cholinergic theta rhythm in transected hippocampal slices: independent CA1 and dentate generators. Brain Res 436:217–222

    PubMed  CAS  Google Scholar 

  60. Konopacki J, MacIver MB, Bland BH, Roth SH (1987b) Carbachol-induced EEG “theta” activity in hippocampal brain slices. Brain Res 405:196–198

    PubMed  CAS  Google Scholar 

  61. Larson J, Lynch G (1988) Role of N-methyl-D-aspartate receptors in the induction of synaptic potentiation by burst stimulations patterned after the hippocampal theta rhythm. Brain Res 441:111–118

    PubMed  CAS  Google Scholar 

  62. Leung L-WS (1980) Behavior-dependent evoked potentials in the hippocampal CA1 region of the rat. I. Corrrelation with behavior and EEG. Brain Res 198:95–117

    PubMed  CAS  Google Scholar 

  63. Leung SL-W, Yim C-YC (1991) Intrinsic membrane potential oscillations in hippocampal neurons in vitro. Brain Res 553:261–274

    PubMed  CAS  Google Scholar 

  64. Llinás RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664

    PubMed  Google Scholar 

  65. Llinás RR, Ribary U (1992) Rostrocaudal scan in human brain: a global characteristic of the 40Hz response during sensory input. In: Basar E, Bullock TH (eds) Induced rhythms in the brain. Birkhäuser, Boston, pp 147–154

    Google Scholar 

  66. Llinás RR, Grace AA, Yarom Y (1991) In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. Proc Natl Acad Sci USA 88:897–901

    PubMed  Google Scholar 

  67. Lopes da Silva FH (1991) Neural mechanisms underlying brain waves: from neural membrane to networks. Electroencephalogr Clin Neurophysiol 79:81–93

    PubMed  CAS  Google Scholar 

  68. Lopes da Silva FH, Storm van Leeuwen W (1977) The cortical source of the alpha rhythm. Neurosci Lett 6:237–241

    PubMed  CAS  Google Scholar 

  69. Lopes da Silva FH, Storm van Leeuwen W (1978) The cortical alpha rhythm in dog; the depth and surface profile of phase. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven, New York, pp 319–333

    Google Scholar 

  70. Lopes da Silva FH, van Rotterdam A (1993) Biophysical aspects of EEG and magnetoencephalogram generation. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography, 3rd edn. Williams and Wilkins, Baltimore, pp 78–91

    Google Scholar 

  71. Lopes da Silva FH, Van Rotterdam A, Storm van Leeuwen W, Tielen AM (1970) Dynamic characteristics of visual evoked potentials in the dog. II. Beta frequency selectivity in evoked potentials and background activity. Electroencephalogr Clin Neurophysiol 29:260–268

    PubMed  CAS  Google Scholar 

  72. Lopes da Silva FH, van Lierop THMT, Schrijer CFM, Storm van Leeuwen W (1973) Essential differences between alpha rhythms and barbiturate spindles: spectra and thalamocortical coherences. Electroencephalogr Clin Neurophysiol 35:641–645

    Google Scholar 

  73. Lopes da Silva FH, Vos JE, Mooibroek J, van Rotterdam A (1980) Partial coherence analysis of thalamic and cortical alpha rhythms in dog — a contribution towards a general model of the cortical organization of rhythmic activity. In: Pfurtscheller G, Buser P, Lopes da Silva FH, Petsche H (eds) Rhythmic EEG activities and cortical functioning. Elsevier, Holland, pp 33–59

    Google Scholar 

  74. Lopes da Silva FH, Witter MP, Boeijinga PH, Lohman AHM (1990) Anatomical organisation and physiology of the limbic cortex. Physiol Rev 70:453–511

    PubMed  CAS  Google Scholar 

  75. Lopes da Silva FH, Pijn JP, Wadman WJ (1994) Dynamics of local neuronal networks: control parameters and state bifurcations in epileptogenesis. In: Corner MA (ed) Progress in brain research, vol 102. Elsevier Science, Amsterdam, pp 347–358

    Google Scholar 

  76. Lorente de Nó (1947) Action potential of the moto-neurons of the hypoglossus nucleus. J Cell Comp Physiol 29:207–287

    Google Scholar 

  77. MacVicar BA, Tse FWY (1989) Local neuronal circuitry underlying cholinergic rhythmical slow activity in CA3 area of rat hippocampal slices. J Physiol (Lond) 417:197–212

    CAS  Google Scholar 

  78. McCormick DA, Hugenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68:1384–1400

    PubMed  CAS  Google Scholar 

  79. McCormick DA, Pape HC (1990a) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurons. J Physiol (Lond) 431:291–318

    CAS  Google Scholar 

  80. McCormick DA, Pape HC (1990b) Noradrenergic and serotonergic modulation of a hyperpolatization-activated cation current in thalamic relay neurons. J Physiol (Lond) 431:319–342

    CAS  Google Scholar 

  81. McLennan H, Miller JJ (1976) Frequency-related inhibitory mechanisms controlling rhyhmical activity in the septal area. J Physiol (Lond) 254:827–841

    CAS  Google Scholar 

  82. Melchers BPC, Lopes da Silva FH, Wadman WJ (1986) Long-term potentiation in the hippocampal slice: spatial aspects. In: Matthies H (ed) Learning and memory: mechanisms of information storage in the nervous system. Pergamon, New York, pp 51–60

    Google Scholar 

  83. Mitzdorf U, Singer W (1978) Prominent excitatory pathways in the cat visual cortex (A17 and A18): a current source density analysis of electrically evoked potentials. Exp Brain Res 33:371–394

    PubMed  CAS  Google Scholar 

  84. Montaron MF, Bouyer JJ, Rougeul A, Buser P (1982) Ventral mesencephalic tegmentum (VMT) controls electrocortical beta rhythms and associated attentive behaviour in the cat. Behav Brain Res 6:129–145

    PubMed  CAS  Google Scholar 

  85. Moruzzi G, Magoun HV (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    PubMed  CAS  Google Scholar 

  86. Murthy VN, Fetz EE (1992) Coherent 25–35 Hz oscillations in the sensorimotor cortex of the awake behaving monkey. Proc Natl Acad Sci USA 89:5670–5674

    PubMed  CAS  Google Scholar 

  87. Niedermeyer E (1990a) An independent alpha-like rhythm in the temporal region. Electroencephalogr Clin Neurophysiol 75:S103 (abstract)

    Google Scholar 

  88. Niedermeyer E (1990b) Alpha-like rhythmical activity of the temporal lobe. Clin Electroencephalogr 21:210–224

    PubMed  CAS  Google Scholar 

  89. Niedermeyer E (1991) The “third rhythm”: further observations. Clin Electroencephalogr 22:83–96

    PubMed  CAS  Google Scholar 

  90. Niedermeyer E (1993) The normal EEG of the waking adult. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography. Basic principles, clinical applications, and related fields. Williams and Wilkins, Baltimore, pp 131–152

    Google Scholar 

  91. Niedermeyer E, Lopes da Silva FH (eds) (1993) Electroencephalography. Basic principles, clinical applications, and related fields. Williams and Wilkins, Baltimore

    Google Scholar 

  92. Nuñez PL (1981) Electrical fields of the brain. Oxford University Press, New York

    Google Scholar 

  93. Nunez PL (1989) Generation of human EEG by a combination of long and short range neocortical interactions. Brain Topogr 1:199–215

    PubMed  CAS  Google Scholar 

  94. Ott E (1993) Chaos in dynamical systems. Cambridge University Press, Cambridge

    Google Scholar 

  95. Petsche H, Stumpf C, Gogolak G (1962) The significance of the rabbit’s septum as a relay station between the midbrain and the hippocampus. The control of hippocampus arousal activity by septum cells. Electroencephalogr Clin Neurophysiol 14:202–211

    PubMed  CAS  Google Scholar 

  96. Petsche H, Pockberger H, Rappelsberger P (1984) On the search for the sources of the electroencephalogram. Neuroscience 11:1–27

    PubMed  CAS  Google Scholar 

  97. Pfurtscheller G, Aranibar A (1977) Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol 42: 817–826

    PubMed  CAS  Google Scholar 

  98. Pfurtscheller G, Aranibar A (1980) Voluntary movement ERD: normative studies. In: Pfurtscheller G, Buser P, Lopes da Silva FH, Petsche H (eds) Rhythmic EEG activities and cortical functioning. Elsevier, Amsterdam, pp 151–177

    Google Scholar 

  99. Pijn JP, van Neerven J, Noest A, Lopes da Silva FH (1991) Chaos or noise in EEG signals; dependence on state and brain site. Electroencephalogr Clin Neurophysiol 79:371–381

    PubMed  CAS  Google Scholar 

  100. Plonsey R (1969) Bioelectric phenomena. McGraw-Hill, New York

    Google Scholar 

  101. Raichle ME (1994) Visualizing the mind. Sci Am 270:36–43

    Google Scholar 

  102. Rapp PE, Zimmerman ID, Albano AM, Deguzman GC, Greenbaun NN (1985) Dynamics of spontaneous neural activity in the simian motor cortex: the dimension of chaotic neurons. Phys Lett 110A:335–338

    Google Scholar 

  103. Regan DA (1968) A high frequency mechanism which underlies visual evoked potentials. Electroencephalogr Clin Neurophysiol 25:231–237

    PubMed  CAS  Google Scholar 

  104. Rose GM, Dunwiddie TV (1986) Induction of hippocampal long-term potentiation using physiologically patterned stimulation. Neurosci Lett 69:244–248

    PubMed  CAS  Google Scholar 

  105. Rougeul-Buser A, Bouyer JJ, Dedet L, Debray O (1979) Fast somato-parietal rhythms during combined focal attention and immobility in baboon and squirrel monkey. Electroencephalogr Clin Neurophysiol 46:310–319

    Google Scholar 

  106. Schuster HG, Wagner P (1990) A model for neuronal oscillations in the visual cortex, parts I and II. Biol Cybern 64:77–85

    PubMed  CAS  Google Scholar 

  107. Sheer DE (1989) Sensory and cognitive 40-Hz event-related potentials: behavioral correlates, brain function, and clinical application. In: Basar E, Bullock TH (eds) Springer series in brain dynamics, vol 2. Springer, Berlin Heidelberg New York, pp 339–374

    Google Scholar 

  108. Spekreijse H, van der Tweel LH (1972) System analysis of linear and nonlinear processes in electrophysiology of the visual system. KNAW Proc Ser C 75(2)

    Google Scholar 

  109. Sporns O, Gally JA, Reeke GN, Edelman GM (1989) Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity. Proc Natl Acad Sci USA 86:7265–7269

    PubMed  CAS  Google Scholar 

  110. Steriade M (1993) Cellular substrates of brain rhythms. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography. Basic principles, clinical applications, and related fields, 3rd edn. Williams and Wilkins, Baltimore, pp 27–62

    Google Scholar 

  111. Steriade M, Jones EG, Linás RR (1990a) Thalamic oscillations and signaling. Wiley-Interscience, New York

    Google Scholar 

  112. Steriade M, Gloor P, Llinás RR, Lopes da Silva FH, Mesulam M-M (1990b) Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 76:481–508

    PubMed  CAS  Google Scholar 

  113. Steriade M, Curró Dossi R, Nuñez A (1991a) Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: corticaly induced synchronization and brainstem cholinergic suppression. J Neurosci 11:3200–3217

    PubMed  CAS  Google Scholar 

  114. Steriade M, Curró Dossi R, Paré D, Oakson G (1991b) Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Natl Acad Sci USA 88:4396–4400

    PubMed  CAS  Google Scholar 

  115. Storm van Leeuwen W, Wieneke G, Spoelstra P, Versteeg W (1978) Lack of bilateral coherence of mu-rhythm. Electroencephalogr Clin Neurophysiol 44:140–146

    Google Scholar 

  116. Szentágothai J (1978) The local neuronal apparatus of the cerebral cortex. In: Buser P, Rougeul-Buser A (eds) Cerebral correlates of conscious experience. Elsevier, North-Holland Biomedical Press, New York, pp 131–138 (INSERM symposium no 6)

    Google Scholar 

  117. Thompson JMT, Stewart HB (1986) Nonlinear dyamics and chaos. Wiley, Chichester

    Google Scholar 

  118. Tiihonen J, Kajola M, Hari R (1989) Magnetic mu rhythm in man. Neuroscience 32:793–800

    PubMed  CAS  Google Scholar 

  119. Tömböl T (1978) Comparative data on the Golgi architecture of interneurons of different cortical areas in cat and rabbit. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven, New York, pp 59–76

    Google Scholar 

  120. Tóth T, Crunelli V (1992) Computer simulation of the pacemaker oscillations of thalamocortical cells. Neuro Rept 3:65–68

    Google Scholar 

  121. van der Tweel LH (1961) Some problems in vision regarded with respect to linearity and frequency response. Ann NY Acad Sci 89:829–856

    PubMed  Google Scholar 

  122. van Groen T, Lopes da Silva FH, Wadman WJ (1987) Synaptic organization of olfactory inputs and local circuits in the entorhinal cortex: a current source density analysis in the cat. Exp Brain Res 67:615–622

    PubMed  Google Scholar 

  123. van Rotterdam A, Lopes da Silva FH, van den Ende J, Viergever MA, Hermans AJ (1982) A model of the spatial-temporal characteristics of the alpha rhythm. Bull Math Biol 44:283–305

    PubMed  Google Scholar 

  124. Vinogradova OS, Brazhnik ES, Karnov AN, Zhadina SD (1980) Analysis of neuronal activity in rabbit’s septum with various conditions of deafferentation. Brain Res 187:354–368

    Google Scholar 

  125. Wang X-J (1994) Multiple dynamical modes of thalamic relay neurons: rhythmic bursting and intermittent phase-locking. Neuroscience 59:21–31

    PubMed  CAS  Google Scholar 

  126. Wiley TJ, Maeda G, Schultz RL, Scibly WS, Horowitz JM (1981) The principal projection pathway between the olfactory bulb and the prepyriform cortex in the cat. J Neurosci Res 9:253–277

    Google Scholar 

  127. Williamson SJ, Kaufman L (1989) Advances in neuro-magnetic instrumentation and studies of spontaneous brain activity. Brain Topogr 2:129–139

    PubMed  CAS  Google Scholar 

  128. Wilson CL, Motter BC, Lindsley DB (1976) Influences of hypothalamic stimulation upon septal and hippocampal electrical activity in the cat. Brain Res 107:55–68

    PubMed  CAS  Google Scholar 

  129. Winson J (1984) Neuronal transmission through the hippocampus: dependence on behavioural state. In: Reinoso-Suárez F, Ajmone-Marsan C (eds) Cortical Integration. Raven, New York, pp 131

    Google Scholar 

  130. Winson J (1986) Behaviorally dependent neuronal gating in the hippocampus. In: Isaacson RL, Pribram KH (eds) The hippocampus, vol 4. Plenum, New York, pp 77–92

    Google Scholar 

  131. Winson J, Abzug C (1978a) Neuronal transmission through hippocampal pathways dependent on behavior. J Neurophysiol 41:716–732

    PubMed  CAS  Google Scholar 

  132. Winson J, Abzug C (1978b) Dependence upon behavior of neuronal transmission from perforant pathway through entorhinal cortex. Brain Res 147:422–427

    PubMed  CAS  Google Scholar 

  133. Wright JJ, Sergejew AA (1991) Radial coherence, wave velocity and damping of electrocortical waves. Electroencephalogr Clin Neurophysiol 79:403–412

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

da Silva, F.H.L. (1996). The Generation of Electric and Magnetic Signals of the Brain by Local Networks. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics