Skip to main content

Regulatory Principles in Physiology

  • Chapter
Comprehensive Human Physiology

Abstract

All living organisms live in the tension between constancy and change. On the one hand, they have to keep certain structural and functional states reasonably invariant; for instance, concentrations of important ions in the blood plasma (e.g., protons, ionized Ca2+) are maintained within narrow limits by complex regulatory mechanisms establishing homeostatic conditions. On the other hand, many internal and external variables can and must be changed. These changes may depend upon circumstantial requirements, such as the increase in cardiac output and blood pressure during exercise, or they may follow rhythmic patterns, such as diurnal or other periodicity. An important task for the organism then is to coordinate and integrate these different patterns into a functional whole.

Dedicated to the memory of our late colleague H.P. Koepchen

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander GE, DeLong MR, Crutcher MD (1992) Do cortical and basal ganglionic motor areas use “motor programs” to control movement? Behav Brain Sci 15:656–665

    Article  Google Scholar 

  2. Arnold DB, Robinson DA (1991) A learning network model of the neural integrator of the oculomotor system. Biol Cybern 64:447–454

    Article  PubMed  CAS  Google Scholar 

  3. Boiteux A, Hess B, Sel’kov E (1980) Creative functions of instability and oscillations in metabolic systems. Curr Top Cell Regul 17:171–203

    PubMed  CAS  Google Scholar 

  4. Brown MC, Goodwin GM, Matthews PBC (1970) The persistence of stable bonds between actin and myosin filaments of intrafusal muscle fibres following their activation. J Physiol (Lond) 210:9P–10P

    PubMed  Google Scholar 

  5. Cannon WB (1929) Organization for physiological homeostasis. Physiol Rev 9:399–431

    Google Scholar 

  6. DeRusso PM, Roy BJ, Close CM (1965) State variables for engineers. Wiley, New York

    Google Scholar 

  7. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern 60:121–130

    Article  PubMed  CAS  Google Scholar 

  8. Engel AK, König P, Gray CM, Singer W (1990) Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by cross-correlation analysis. Eur J Neurosci 2:588–606

    Article  PubMed  Google Scholar 

  9. Garfinkel A (1983) A mathematics for physiology. Am J Physiol 245 (Regul Integrative Comp Physiol 14):R455–R466

    PubMed  CAS  Google Scholar 

  10. Gleick J (1987) Chaos. Making a new science. Viking Penguin, New York

    Google Scholar 

  11. Haken H (1983) Synergetics. An introduction, 3rd edn. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  12. Hess B, Markus M (1987) Order and chaos in biochemistry. Trends Biol Sci 12:45–48

    Article  CAS  Google Scholar 

  13. Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer, Sunderland, Mass

    Google Scholar 

  14. Houk JC, Rymer WZ (1981) Neural control of muscle length and tension. In: Brooks VB (ed) The nervous system. American Physiological Society, Bethesda, pp 257–323 (Handbook of physiology, vol II, part 1)

    Google Scholar 

  15. Inbar GF (1972) Muscle spindles in muscle control. 3. Analysis of adaptive system model. Kybernetik 11:130–141

    Article  PubMed  CAS  Google Scholar 

  16. Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  17. Koepchen HP (1991) Physiology of rhythms and control systems: an integrative approach. In: Haken H, Koepchen HP (eds) Rhythms in physiological systems. Springer, Berlin Heidelberg New York, pp 3–20 (Springer series in synergetics, vol 55)

    Chapter  Google Scholar 

  18. Kuhn TS (1970) The structure of scientific revolutions. Chicago University Press, Chicago

    Google Scholar 

  19. MacKay WA, Murphy JT (1979) Cerebellar modulation of reflex gain. Prog Neurobiol 13:361–417

    Article  PubMed  CAS  Google Scholar 

  20. Mannard J, Stein RB (1973) Determination of the frequency response of isometric soleus muscle in the cat using random nerve stimulation. J Physiol (Lond) 229:275–296

    CAS  Google Scholar 

  21. Matthews PBC, Stein RB (1969) The sensitivity of muscle spindle afférents to small sinusoidal changes in length. J Physiol (Lond) 200:723–743

    CAS  Google Scholar 

  22. Milsum JH (1966) Biological control systems analysis. McGraw-Hill, New York

    Google Scholar 

  23. Mittelstaedt H (1990) Basic solutions to the problem of head-centric visual localization. In: Warren R, Wertheim AH (eds) Perception and control of self-motion. Erlbaum, Hillsdale, pp 267–287

    Google Scholar 

  24. Nelson ME, Bower JM (1990) Brain maps and parallel computers. Trends Neurosci 13:403–408

    Article  PubMed  CAS  Google Scholar 

  25. Peitgen H-O, Richter PH (1986) The beauty of fractals. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  26. Pool R (1989) Is it healthy to be chaotic? Science 243:604–607

    Article  PubMed  CAS  Google Scholar 

  27. Rapp PE (1987) Why are so many biological systems periodic? Prog Neurobiol 29:261–273

    Article  PubMed  CAS  Google Scholar 

  28. Richter P, Ross J (1981) Concentration oscillations and efficiency: glycolysis. Science 211:715–717

    Article  PubMed  CAS  Google Scholar 

  29. Robinson DA (1981) Control of eye movements. In: Brookhart JM, Mountcastle VB, Brooks VB, Geiger SR (eds) The nervous system. American Physiological Society, Bethesda, pp 1275–1320 (Handbook of physiology, motor control, part 1)

    Google Scholar 

  30. Robinson DA (1989) Integrating with neurons. Annu Rev Neurosci 12:33–45

    Article  PubMed  CAS  Google Scholar 

  31. Robinson DA (1992) Implications of neural networks for how we think about brain function. Behav Brain Sci 15:644–655

    Google Scholar 

  32. Schuster HG (1989) Deterministic chaos. An introduction. VCH, Weinheim

    Google Scholar 

  33. Smith WR (1983) Qualitative mathematical models of endocrine systems. Am J Physiol 245 (Regul Integrative Comp Physiol 14):R473–R477

    PubMed  CAS  Google Scholar 

  34. Vilis T, Tweed D (1991) What can rotational mechanics tell us about the neural control of eye movements? In: Humphrey DR, Freund HJ (eds) Motor control: concepts and issues. Wiley, Chichester, pp 85–99

    Google Scholar 

  35. Von Hoist E, Mittelstaedt H (1950) Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37:464–476

    Article  Google Scholar 

  36. Windhorst U (1988) How brain-like is the spinal cord? Interacting cell assemblies in the nervous system. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Windhorst, U. (1996). Regulatory Principles in Physiology. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics