Skip to main content

Abstract

Synapses. The term “synapse,” based on the Greek word to clasp, was introduced by Sir Charles Sherrington as early as in 1897 [11]. Despite this early definition of specialized contacts between nerve cells by a physiologist, there was a long-lasting debate among morphologists as to the existence of such contacts. The reticular theory, as proposed for instance by Camillo Golgi [11], described the nervous system as a continuous network of nerve fibers, a “syncytium,” rather than a discontinuous arrangement of cells that establish contacts with each other via their long processes. It was the Spanish neuroanatomist Ramón y Cajal [37] who, by using Golgi’s silver impregnation method, provided strong morphological evidence for contiguity rather than continuity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  • Barnard EA (1992) Receptor classes and the transmitter-gated ion channels. Trends Biochem Sci 17:368–374

    Article  PubMed  CAS  Google Scholar 

  • Baudry M, Davis JL (1991) Long-term potentiation: a debate of current issues. MIT Press, Cambridge

    Google Scholar 

  • Betz H (1991) Glycine receptors: heterogeneous and widespread in the mammalian brain. Trends Neurosci 14:458–461

    Article  PubMed  CAS  Google Scholar 

  • Bloom FE (1984) The functional significance of neurotransmitter diversity. Am J Physiol 246:C184–C194

    PubMed  CAS  Google Scholar 

  • Burnstock G (1990) Co-transmission. Arch Int Pharmacodyn 304:7–33

    PubMed  CAS  Google Scholar 

  • Eccles JC (1964) The physiology of synapses. Springer, Berlin Göttingen Heidelberg New York

    Book  Google Scholar 

  • Edelman GM, Gall WE, Cowan WM (1987) Synaptic function. Wiley, New York

    Google Scholar 

  • Garthwaite J (1991) Glutamate, nitric oxide and cell-cell signaling in the nervous system. Trends Neurosci 14:60–67

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1991) Ionic channels of excitable membranes. Sinauer, Sunderland

    Google Scholar 

  • Jessell TM, Kandel ER (1993) Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication. Cell 72/Neuron 10 [Suppl]:l–30

    Google Scholar 

  • Kuffler SW, Nicholls JG, Martin AR (1984) From neuron to brain: a cellular approach to the function of the nervous system. Sinauer, Sunderland

    Google Scholar 

  • Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Palay SL, Webster HD (1991) The fine structure of the nervous system. Neurons and their supporting cells. Oxford University Press, New York

    Google Scholar 

  • Pfenninger KH (1973) Synaptic morphology and cytochemistry. Prog Histochem Cytochem 5:1–86

    Article  Google Scholar 

  • Ramón y Cajal SR (1990) New ideas on the structure of the nervous system in man and vertebrates. MIT Press, Cambridge

    Google Scholar 

  • Sakmann B, Neher E (1983) Single-channel recording. Plenum, New York

    Google Scholar 

  • Sakmann B, Witzemann V, Brenner H (1992) Developmental changes in acetylcholine receptor channel structure and function as a model for synaptic plasticity. FIDIA Res Found Neurosci Award Lect 6:51–103

    Google Scholar 

  • Scharrer B (1987) Neurosecretion: beginnings and new directions in neuropeptide research. Annu Rev Neurosci 10:1–17

    Article  PubMed  CAS  Google Scholar 

  • Unwin N (1993) Neurotransmitter action: opening of ligand-gated ion channels. Cell 72/Neuron 10 [Suppl]:31–41

    Article  Google Scholar 

  • Zimmermann H (1993) Synaptic transmission: cellular and molecular basis. Thieme, Stuttgart

    Google Scholar 

Specific References

  1. Akert K, Pfenninger K, Sandri C, Moor H (1972) Freeze etching and cytochemistry of vesicles and membrane complexes in synapses of the central nervous system. In: Pappas GD, Purpura DP (eds) Structure and function of synapses. Raven, New York, pp 67–86

    Google Scholar 

  2. Andersen P, Eccles JC, Loyning Y (1964a) Location of postsynaptic inhibitory synapses on hippocampal pyramids. J Neurophysiol 27:592–607

    PubMed  Google Scholar 

  3. Andersen P, Eccles JC, Loyning Y (1964b) Pathway of postsynaptic inhibition in the hippocampus. J Neurophysiol 27:608–619

    PubMed  CAS  Google Scholar 

  4. Baier H, Bonhoeffer F (1992) Axon guidance by gradients of a target-derived component. Science 255:472–475

    Article  PubMed  CAS  Google Scholar 

  5. Berne RM, Levy MN (1993) Physiology, 3rd edn. Mosby Year Book, St Louis

    Google Scholar 

  6. Blackstad TW, Kjaerheim A (1961) Special axo-dendritic synapses in the hippocampal cortex: electron and light microscopic studies on the layer of mossy fibres. J Comp Neurol 117:113–159

    Article  Google Scholar 

  7. Bliss, TVP, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond) 232:331–356

    CAS  Google Scholar 

  8. Changeux JP, Danchin A (1976) Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature 264:705–712

    Article  PubMed  CAS  Google Scholar 

  9. Conner-Kerr TA, Simmons DR, Peterson GM, Terrian DM (1993) Evidence for the corelease of dynorphin and glutamate from rat hippocampal mossy fiber terminals. J Neurochem 61:627–636

    Article  PubMed  CAS  Google Scholar 

  10. Curtis DR, Eccles JC (1959) The time course of excitatory and inhibitory synaptic actions. J Physiol (Lond) 145: 529–546

    CAS  Google Scholar 

  11. Eccles JC (1982) The synapse: from electrical to chemical transmission. Annu Rev Neurosci 5:325–339

    Article  PubMed  CAS  Google Scholar 

  12. Frotscher M (1989) Central cholinergic synapses: the septohippocampal system as a model. In: Frotscher M, Misgeld U (eds) Central cholinergic synaptic transmission. Birkhäuser, Basel, pp 33–41

    Chapter  Google Scholar 

  13. Frotscher M, Heimrich B (1993) Formation of layer-specific fiber projections to the hippocampus in vitro. Proc Natl Acad Sci U S A 90:10400–10403

    Article  PubMed  CAS  Google Scholar 

  14. Goodman CS, Shatz CJ (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72/Neuron 10 [Suppl]:77–98

    Article  Google Scholar 

  15. Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433

    PubMed  CAS  Google Scholar 

  16. Greengard P, Valtorta F, Czernik AJ, Benfenati F (1993) Synaptic vesicle phosphoproteins and regulation of function. Science 259:780–785

    Article  PubMed  CAS  Google Scholar 

  17. Gundersen RW, Barrett JN (1980) Characterization of the turning response of dorsal root neurites toward nerve growth factor. J Cell Biol 87:546–555

    Article  PubMed  CAS  Google Scholar 

  18. Hamlyn LH (1962) The fine structure of the mossy fibre endings in the hippocampus of the rabbit. J Anat 97:112–120

    Google Scholar 

  19. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  20. Heffner CD, Lumsden AGS, O’Leary DDM (1990) Target control of collateral extension and directional axon growth in the mammalian brain. Science 247:217–220

    Article  PubMed  CAS  Google Scholar 

  21. Hökfelt T (1991) Neuropeptides in perspective—the last ten years. Neuron 7:867–879

    Article  PubMed  Google Scholar 

  22. Kandel ER, Schwartz JH, Jessell TM (eds) (1991) Principals of neural science, 3rd edn. Appleton and Lange, Norwalk

    Google Scholar 

  23. Katz B (1969) The release of neural transmitter substances. Thomas, Springfield

    Google Scholar 

  24. Kelly RB (1993) Storage and release of neurotransmitters. Cell 72/Neuron 10 [Suppl]:43–53

    Article  Google Scholar 

  25. King JS (1988) Chemical synapses in the mammalian central nervous system: an introduction. J Electron Microsc Techn 10:205–210

    Article  CAS  Google Scholar 

  26. Korn H, Faber DS (1991) Quantal analysis and synaptic efficacy in the CNS. Trends Neurosci 14:439–445

    Article  PubMed  CAS  Google Scholar 

  27. Korsching S (1993) The neurotrophic factor concept: a reexamination. J Neurosci 13:2739–2748

    PubMed  CAS  Google Scholar 

  28. Kosaka T, Tateishi K, Hamaoka Y, Yaneihara N, Wu Y-Y, Hama K (1985) GABAergic neurons containing CCK-8-like and/or VIP-like immunoreactivities in the rat hippocampus and dentate gyrus. J Comp Neurol 239:420–430

    Article  PubMed  CAS  Google Scholar 

  29. Loewi O (1921) Über humorale Übertragbarkeit der Herznervenwirkung. Pflugers Arch Gesamte Physiol 189:239–242

    Article  Google Scholar 

  30. Lundberg JM, Hökfelt T (1983) Coexistence of peptides and classical neurotransmitters. Trends Neurosci 6:325–333

    Article  CAS  Google Scholar 

  31. Neher E (1992) Ion channels for communication between and within cells. Neuron 8:606–612

    Article  Google Scholar 

  32. Nicoll RA, Kauer JA, Malenka RC (1988) The current excitement in long-term potentiation. Neuron 1:97–103

    Article  PubMed  CAS  Google Scholar 

  33. O’Connor V, Augustine GJ, Betz H (1994) Synaptic vesicle exocytosis: molecules and models. Cell 76:785–787

    Article  PubMed  Google Scholar 

  34. Palade GE, Palay SL (1954) Electron microscope observations of interneuronal and neuromuscular synapses. Anat Rec 118:335–336

    Google Scholar 

  35. Palay SL (1956) Synapses in the central nervous system. J Biophys Biochem Cytol 2:193–206

    Article  PubMed  CAS  Google Scholar 

  36. Palay SL (1958) The morphology of synapses of the central nervous system. Exp Cell Res 5:275–293

    Google Scholar 

  37. Ramon y Cajal SR (1911) Histologie du système nerveux de l’homme et des vertébrés. Maloine, Paris

    Google Scholar 

  38. Ribak CE, Vaughn JE, Saito K (1978) Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res 140:315–332

    Article  PubMed  CAS  Google Scholar 

  39. Sakmann B (1992) Elementary steps in synaptic transmission revealed by currents through single ion channels. Neuron 8:613–629

    Article  PubMed  CAS  Google Scholar 

  40. Somogyi P, Hodgson AJ, Smith AD, Nunzi MG, Gorio A, Wu J-Y (1984) Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin or cholecystokinin-immunoreactive material. J Neurosci 4:2590–2603

    PubMed  CAS  Google Scholar 

  41. Sperry RW (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci USA 50:703–710

    Article  PubMed  CAS  Google Scholar 

  42. Starke K, Göthert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69:864–989

    PubMed  CAS  Google Scholar 

  43. Stevens CF (1993) Quantal release of neurotransmitter and long-term potentiation. Cell 72/Neuron 10 [Suppl]:55–63

    Article  Google Scholar 

  44. Steward O, Levy WB (1982) Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J Neurosci 2:284–291

    PubMed  CAS  Google Scholar 

  45. Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug FMS, Ottersen OP (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520

    Article  PubMed  CAS  Google Scholar 

  46. Südhof TC, Jahn R (1991) Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 6:665–677

    Article  PubMed  Google Scholar 

  47. Südhof TC, De Camilli P, Niemann H, Jahn R (1993) Membrane fusion machinery: insights from synaptic proteins. Cell 75:1–4

    PubMed  Google Scholar 

  48. Thoenen H (1991) The changing scene of neurotrophic factors. Trends Neurosci 14:165–170

    Article  PubMed  CAS  Google Scholar 

  49. Uchizono K (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207:642–643

    Article  PubMed  CAS  Google Scholar 

  50. von Kügelgen I, Starke K (1991) Noradrenaline-ATP co-transmission in the sympathetic nervous system. Trends Pharmacol Sci 12:319–324

    Article  Google Scholar 

  51. Walch-Solimena C, Jahn R, Südhof TC (1993) Synaptic vesicle proteins in exocytosis: what do we know? Curr Opin Neurobiol 3:329–336

    Article  PubMed  CAS  Google Scholar 

  52. Wigström H, Gustafsson B, Huang Y-Y, Abraham WC (1986) Hippocampal long-lasting potentiation is induced by pairing single afferent volley with intracellularly injected depolarizing current pulses. Acta Physiol Scand 126:317–319

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frotscher, M. (1996). Synaptic Transmission. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics