Skip to main content

Excitation and Nerve Conduction

  • Chapter
Comprehensive Human Physiology

Abstract

Living cells are generally distinguished by the maintenance of an ionic composition in their cytoplasm which differs from that in the tissue fluid bathing them. The cytoplasm is rich in K+ ions and low in Na+, while in the surrounding milieu the reverse holds, and this imbalance is held with considerable stability by homeostatic mechanisms (see Chap. 11). This differential ionic distribution creates the possibility of developing a property called excitability which is found in many different biological systems, including unicellular animals and plants and the nervous systems of higher animals. A simple form of excitability is seen when a touch to the exterior of the animal gives rise to a resulting muscular movement, and indeed until the invention of the electrometer in the nineteenth century this was the only way in which the occurrence of excitation could be detected. Subsequently the production of action potentials, impulses of electrical activity, could be seen independent of muscular contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong CM, Bezanilla F (1974) Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol 63:533–552

    Article  PubMed  CAS  Google Scholar 

  2. Baker PF, Hodgkin AL, Shaw TI (1961) Replacement of the protoplasm of a giant nerve fibre with artificial solutions. Nature 190:885–887

    Article  PubMed  CAS  Google Scholar 

  3. Boyd IA, Davey MR (1968) Composition of peripheral nerves. Livingstone, Edinburgh

    Google Scholar 

  4. Catterall WA, Schmidt JW, Messner DJ, Feller DJ (1986) Structure and biosynthesis of sodium channels. Ann NY Acad Sci 479:186–203

    Article  PubMed  CAS  Google Scholar 

  5. Cole KS (1949) Dynamic electrical characteristics of the squid axon membrane. Arch Sci Physiol 3:253–258

    CAS  Google Scholar 

  6. Cole KS, Curtis HJ (1939) Electric impedance of the squid giant axon during activity. J Gen Physiol 22:649–670

    Article  PubMed  CAS  Google Scholar 

  7. Conti F, DeFelice LJ, Wanke E (1975) Potassium and sodium ion current noise in the membrane of the squid giant axon. J Physiol (Lond) 248:45–82

    CAS  Google Scholar 

  8. Conti F, Neher E (1980) Single channel current recordings of K+ currents in squid axons. Nature 285:140–143

    Article  PubMed  CAS  Google Scholar 

  9. Ehrenstein G, Lecar H, Nossal R (1970) The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material. J Gen Physiol 55:119–133

    Article  PubMed  CAS  Google Scholar 

  10. Erlanger J, Gasser HS (1937) Electrical signs of nervous activity. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  11. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth F J (1981) Improved patch-clamp for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  12. Hodgkin AL (1964) The conduction of the nervous impulse. Thomas, Springfield

    Google Scholar 

  13. Hodgkin AL, Huxley AF (1952a) Currents carried by sodium and potassium through the membrane of the giant axon of Loligo. J Physiol 116:449–472

    PubMed  CAS  Google Scholar 

  14. Hodgkin AL, Huxley AF (1952b) The components of membrane conductance in the giant axon of Loligo. J Physiol 116:473–496

    PubMed  CAS  Google Scholar 

  15. Hodgkin AL, Huxley AF (1952c) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol (Lond) 116:497–506

    CAS  Google Scholar 

  16. Hodgkin AL, Huxley AF (1952d) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500–544

    CAS  Google Scholar 

  17. Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol (Lond) 108:37–77

    CAS  Google Scholar 

  18. Hodgkin AL, Keynes RD (1956) Experiments on the injection of substances into squid giant axons by means of a microsyringe. J Physiol (Lond) 131:592–616

    CAS  Google Scholar 

  19. Hodgkin AL, Rushton WAH (1946) The electrical constants of a crustacean nerve fiber. Proc R Soc Lond [Biol] 133:449–479

    Article  Google Scholar 

  20. Hoffer JA (1990) Techniques to study spinal-cord, peripheral nerve, and muscle activity in freely moving animals. In: Boulton AA, Baker GB, Vanderwolf CH (eds) Neuro-physiological techniques: applications to neural systems. Humana, Clifton, New Jersey, pp 65–145

    Google Scholar 

  21. Horn R, Vandenberg CA (1984) Statistical properties of single sodium channels. J Gen Physiol 84:505–534

    Article  PubMed  CAS  Google Scholar 

  22. Huxley AF, Stämpfli R (1949) Evidence for saltatory conduction in peripheral myelinated nerve-fibres. J Physiol (Lond) 108:315–339

    Google Scholar 

  23. Jackson MB, Lecar H, Askanas V, Engel WK (1982) Single cholinergic channel currents in cultured human muscle. J Neurosci 2:1465–1473

    PubMed  CAS  Google Scholar 

  24. Junge D (1992) Nerve and muscle excitation, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  25. Methfessel C, Witzemann V, Takahashi T, Mishina M, Numa S, Sakmann B (1986) Patch clamp measurements on Xenopus laevis oocytes: Currents through endogenous channels and implanted acetylcholine receptor and sodium channels. Pflugers Arch 407:577–588

    Article  PubMed  CAS  Google Scholar 

  26. Moore JW, Narahashi T, Shaw TI (1967) An upper limit to the number of sodium channels in nerve membrane? J Physiol (Lond) 188:99–105

    CAS  Google Scholar 

  27. Mueller P, Rudin DO, Tien HT, Wescott WC (1962) Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194:979–980

    Article  PubMed  CAS  Google Scholar 

  28. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:779–802

    Article  Google Scholar 

  29. Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N, Kangawa K, Matsuo H, Raftery MA, Hirose T, Inayama S, Hayashida H, Miyata T, Numa S (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127

    Article  PubMed  CAS  Google Scholar 

  30. Noda M, Ikeda T, Kayano H, Suzuki H, Takashima M, Kurasaki M, Takahashi H, Numa S (1986) Existence of distinctsodium channel messenger RNAs in rat brain. Nature 320:188–192

    Article  PubMed  CAS  Google Scholar 

  31. Sigworth FJ, Neher E (1980) Single Na+ channel currents observed in cultured rat muscle cells. Nature 287:447–449

    Article  PubMed  CAS  Google Scholar 

  32. Stein RB (1980) Nerve and muscle: membranes, cells and systems. Plenum, New York

    Book  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mommaerts, W.F.H.M., Junge, D., Jackson, M.B. (1996). Excitation and Nerve Conduction. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics