Skip to main content

Ion Channels in Excitable Membranes

  • Chapter

Abstract

Excitability. Excitability of cell membranes is crucial for signaling in many types of cell. Excitation in the physiological sense means that the cell membrane potential undergoes characteristic changes which, in most cases, go in the depolarizing direction. Single depolarization from the resting potential to potentials near 0 mV has generally been called an action potential. A schematic representation of a neuronal action potential is given in Fig. 12.1 A. The action potential is triggered when the membrane potential, which was at the resting level, depolarizes and reaches the threshold of excitation. This depolarization, which triggers the action potential, is generated by depolarizing synaptic currents, or depolarizing current coming from a membrane region that is already excited (propagation of an action potential), or by pacemaker currents mediated by pacemaker channels, or by current injected externally by an electrode. The duration of different types of action potential varies from seconds to less than 1 ms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelman JP, Shen Ke-Zhong ¨, Kavanaugh MP, Warren RA, Wu YN, Lagrutta A, Bond CT, North RA (1992) Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron 9:209–216

    PubMed  CAS  Google Scholar 

  2. Aldrich RW, Corey DP, Stevens CF (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306:436–441

    PubMed  CAS  Google Scholar 

  3. Anderson MP, Berger HA, Rich DP, Gregory RJ, Smith AE, Welsh M J (1991) Nucleotide triphosphates are required to open the CFTR Cl channel. Cell 67(4):775–784

    PubMed  CAS  Google Scholar 

  4. Ascher P, Nowak L (1988) Quisqualate- and kainate-acti-vated channels in mouse central neurones in culture. J Physiol (Lond) 399:227–245

    CAS  Google Scholar 

  5. Ashcroft SJH, Ashcroft FM (1990) Properties and functions of ATP-sensitive K-channels. Cell Signal 2:197–214

    PubMed  CAS  Google Scholar 

  6. Bekker JM, Stevens CF (1989) NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341:230–233

    Google Scholar 

  7. Benz I, Frobe U, Kohlhardt M (1991) Single cardiac outwardly rectifying K+ channels modulated by protein kinase A and a G-protein. Eur Biophys J 20(5):281–286

    PubMed  CAS  Google Scholar 

  8. Bettler B, Boulter J, Hermans-Borgmeyer I, O’Shea-Greenfield A, Deneris ES, Moll C, Borgmeyer U, Hollmann M, Heinemann S (1990) Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 5(5):583–595

    PubMed  CAS  Google Scholar 

  9. Bokvist K, Ammala C, Ashcroft FM, Berggren PO, Larsson O, Rorsman P (1991) Separate processes mediate nucleotide-induced inhibition and stimulation of the ATP-regulated K(+)-channels in mouse pancreatic beta-cells. Proc R Soc Lond [Biol] 243(1307):139–144

    CAS  Google Scholar 

  10. Bormann J (1988) Electrophysiology of GABAA and GABAB receptor Subtyps. TINS 11:112–116

    PubMed  CAS  Google Scholar 

  11. Bormann J, Hamill OP, Sakmann B (1987) Mechanisms of anion permeation through channels gated by glycine and g-aminobutyric acid in mouse cultured spinal neurones. J Physiol (Lond) 385:243–286

    CAS  Google Scholar 

  12. Boulter J, Connolly J, Deneris E, Goldmann D, Heinemann S, Patrick J (1987) Functional expression of two neuronal nicotinic acetylcholine receptors from two cDNA clones identifies a gene family. Proc Natl Acad Sci USA 84: 7763–7767

    PubMed  CAS  Google Scholar 

  13. Boulter J, Hollmann M, O’Shea-Greenfield A, Hartley M, Deneris E, Maron C, Heinemann S (1990) Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249:1033–1037

    PubMed  CAS  Google Scholar 

  14. Brown D (1988) M-currents: an update. TINS 11:294–299

    PubMed  CAS  Google Scholar 

  15. Burnashev N, Monyer H, Seeburg PH, Sakmann B (1992a) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8:189–198

    PubMed  CAS  Google Scholar 

  16. Burnashev N, Khodorova A, Jonas P, Helm PJ, Wisden W, Monyer H, Seeburg PH, Sakmann B (1992b) Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256:1566–1570

    PubMed  CAS  Google Scholar 

  17. Burnashev N, Schöpfer R, Monyer H, Ruppersberg JP, Günther W, Seeburg PH, Sakmann B (1992c) Control by asparagine residues of calcium permeability and magnesium blockage in the NMDA receptor. Science 257:1415–1418

    PubMed  CAS  Google Scholar 

  18. Cannon SC, Brown RH Jr, Corey DP (1991) A sodium channel defect in hyperkalemic periodic paralysis: potassium-induced failure of inactivation. Neuron 6:619–626

    PubMed  CAS  Google Scholar 

  19. Catterall WA (1988) Structure and function of voltage-sensitive ion channels. Science 242:50–61

    PubMed  CAS  Google Scholar 

  20. Chen L, Huang LM (1992) Protein kinase C reduces Mg2+ block of NMDA receptor channels as a mechanism of modulation. Nature 356:521–523

    PubMed  CAS  Google Scholar 

  21. Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. TINS 11:465–469

    PubMed  CAS  Google Scholar 

  22. Chung SK, Reinhart PH, Martin BL, Brautigan D, Levitan IB (1991) Protein kinase activity closely associated with a reconstituted calcium-activated potassium channel. Science 253:560–562

    PubMed  CAS  Google Scholar 

  23. Collingridge GL, Singer W (1990) Excitatory amino acid receptors and synaptic plasticity. TIPS 11:290–296

    PubMed  CAS  Google Scholar 

  24. Colquhoun D, Sakmann B (1985) Fast events in single channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J Physiol (Lond) 369:501–557

    CAS  Google Scholar 

  25. Colquhoun D, Jonas P, Sakmann B (1992) Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. J Physiol (Lond) 458:261–287

    CAS  Google Scholar 

  26. Covarrubias M, Wei A, Salkoff L (1991) Shaker, Shaly Shab, and Shaw express independent K+ current systems. Neuron 7:763–773

    PubMed  CAS  Google Scholar 

  27. Cull-Candy SG, Usowicz MM (1987) Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature 325:525–528

    PubMed  CAS  Google Scholar 

  28. Draguhn A, Verdoorn TA, Ewert M, Seeburg PH, Sakmann B (1990) Functional and molecular distinction between recombinant rat GABAA receptor subtypes by Zn2+. Neuron 5:781–788

    PubMed  CAS  Google Scholar 

  29. Egebjerg J, Bettler B, Hermans-Borgmeyer I, Heinemann S (1991) Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351: 745–748

    PubMed  CAS  Google Scholar 

  30. Fakler B, Ruppersberg JP, Spittelmeister W, Rudel R (1990) Inactivation of human sodium channels and the effect of tocainide. Pflugers Arch 415:693–700

    PubMed  CAS  Google Scholar 

  31. Franke C, Hatt H, Dudel J (1987) Liquid filament switch for ultra-fast exchanges of solutions at excised patches of synaptic membrane of crayfish muscle. Neurosci Lett 77:199–204

    PubMed  CAS  Google Scholar 

  32. Franke C, Hatt H, Dudel J (1991) Steep concentration dependence and fast desensitization of nicotinic channel currents elicited by acetylcholine pulses, studied in adult vertebrate muscle. Pflugers Arch 417:509–516

    PubMed  CAS  Google Scholar 

  33. Fritschy JM, Benke D, Mertens S, Oertel WH, Bachi T, Möhler H (1992) Five subtypes of type A λ-aminobutyric acid receptors identified in neurons by double and triple immunofluorescence staining with subunit-specific antibodies. Proc Natl Acad Sci USA 89:6726–6730

    PubMed  CAS  Google Scholar 

  34. Hagiwara S, Miyazaki S, Rasenthal NP (1976) Potassium current and the effect of cesium on this current during anomalous rectihfication of the egg cell membrane of a starfish. J Gen Physiol 67:621–638

    PubMed  CAS  Google Scholar 

  35. Hamill OP, Bormann J, Sakmann B (1983) Activation of multiple conductance state chloride channels in spinal neurones by glycine and GABA. Nature 305:805–808

    PubMed  CAS  Google Scholar 

  36. Hartmann HA, Kirsch GE, Drewe JA, Taglialatela M, John RH, Brown AM (1991) Exchange of conduction pathways between related K+ channels. Science 251:942–944

    PubMed  CAS  Google Scholar 

  37. Heinemann SH, Terlau H, Stühmer W, Imoto K, Numa S (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441–443

    PubMed  CAS  Google Scholar 

  38. Hescheler J, Kameyama M, Trautwein W, Mieskes G, Söling HD (1987) Regulation of the cardiac calcium channel by protein phosphatases. Eur J Biochem 165:261–266

    PubMed  CAS  Google Scholar 

  39. Hescheler J, Klinz FJ, Schultz G, Wittinghofer A (1991) Ras proteins activate calcium channels in neuronal cells. Cell Signal 3:127–133

    PubMed  CAS  Google Scholar 

  40. Hille B (1992) Ion channels of excitable membranes, 2nd edn. Sinauer, Sunderland, Mass

    Google Scholar 

  41. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500–544

    CAS  Google Scholar 

  42. Hollmann M, O’Shear-Greenfield A, Rogers W, Heinemann S (1989) Cloning by functional expression of a member of the glutamate receptor family. Nature 342:643–648

    PubMed  CAS  Google Scholar 

  43. Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of K MPA-gated glutamate receptor channels depend on subunit composition. Science 252:851–853

    PubMed  CAS  Google Scholar 

  44. Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–571

    PubMed  CAS  Google Scholar 

  45. Howe JR, Cull-Candy SG, Colquhoun D (1991) Currents through single glutamate receptor channels in outside-out patches from rat cerebellar granule cells. J Physiol (Lond) 432:143–203

    CAS  Google Scholar 

  46. Hucho F, Hilgenfeld R (1989) The selectivity filter of a ligand gated ion channel. The helix-M2 model of the ion channel of the nicotinic acetylcholine receptor. FEBS Lett 257:17–23

    PubMed  CAS  Google Scholar 

  47. Hume RI, Dingledine R, Heinemann S (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253:1028–1031

    PubMed  CAS  Google Scholar 

  48. Imoto K, Methfessel C, Sakmann B, Mishina M, Mori Y, Konno T, Fukuda K, Kurasaki M, Bujo H, Fujita Y, Numa S (1986) Location of an alpha-subunit region determining ion transport through the acetylcholine receptor channel. Nature 324:670–674

    PubMed  CAS  Google Scholar 

  49. Imoto K, Busch C, Sakmann B, Mishina M, Konno T, Nakai J, Bujo H, Mori Y, Fukuda K, Numa S (1988) Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335:645–648

    PubMed  CAS  Google Scholar 

  50. Jahr CE, Stevens CF (1987) Glutamate activates multiple single channel conductance in hippocampal neurons. Nature 325:522–525

    PubMed  CAS  Google Scholar 

  51. Jentsch TJ, Steinmeyer K, Schwarz G (1990) Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348: 510–514

    PubMed  CAS  Google Scholar 

  52. Jonas P, Sakmann B (1991) Molecular components of currents mediated AMPA subtype glutamate receptors in pyramidal cells of rat hippocampus. J Physiol (Lond) 455:143–171

    Google Scholar 

  53. Jonas P, Duk-Su K, Kampe K, Hermsteiner M, Vogel W (1991) ATP-sensitive and C activated K channels in vertebrate axons: novel links between metabolism and excitability. Pflugers Arch 418:68–73

    PubMed  CAS  Google Scholar 

  54. Katz B, Miledi R (1972) The statistical nature of the acetylcholine potential and its molecular components. J Physiol (Lond) 224:665–699

    CAS  Google Scholar 

  55. Kaupp UB (1991) The cyclic nucleotide-gated channels of vertebrate photoreceptors and olfactory epithelium. Trends Neurosci 14(4):150–157

    PubMed  CAS  Google Scholar 

  56. Keinänen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249:556–560

    PubMed  Google Scholar 

  57. Kume H, Takai A, Tokuno H, Tomita T (1989) Regulation of Ca2+-dependent K+-channel activity in tracheal myocytes by phosphorylation. Nature 341:152–154

    PubMed  CAS  Google Scholar 

  58. Lester RA, Jahr CE (1992) NMDA channel behavior depends on agonist affinity. J Neurosci 12(2):635–643

    PubMed  CAS  Google Scholar 

  59. Lester RA, Clements JD, Westbrook GL, Jahr CE (1990) Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346:565–567

    PubMed  CAS  Google Scholar 

  60. Lin M, Nairn AC, Guggino SE (1992) cGMP-dependent protein kinase regulation of a chloride channel in T84 cells. Am J Physiol 262:C1304–C1312

    PubMed  CAS  Google Scholar 

  61. Lüddens H, Wisden W (1991) Function and pharmacology of multiple GABAA receptor subunits. TIPS 12:49–51

    PubMed  Google Scholar 

  62. Lüddens H, Pritchett DB, Köhler M, Killisch I, Keinanen K, Monyer H, Sprengel R, Seeburg PH (1990) Cerebellar GABAA receptor selective for a behavioural alcohol antagonist. Nature 346:648–651

    PubMed  Google Scholar 

  63. MacKinnon R (1991) Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350:232–235

    PubMed  CAS  Google Scholar 

  64. MacKinnon R, Yellen G (1990) Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science 250:276–279

    PubMed  CAS  Google Scholar 

  65. Matsuda H (1991) Effects of external and internal K+ ions on magnesium block of inwardly rectifying K+ channels in guinea-pig heart cells. J Physiol (Lond) 435:83–99

    CAS  Google Scholar 

  66. Matsuda, Stanfield (1989) Single inwardly rectifying potassium channels in cultured muscle cells from rat and mouse. J Physiol (Lond) 414:111–124

    CAS  Google Scholar 

  67. Mayer ML, Westbrook GL (1985) The action of N-methyl-d-aspartic acid on mouse spinal neurones in culture. J Physiol (Lond) 361:65–90

    CAS  Google Scholar 

  68. Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28:197–276

    PubMed  CAS  Google Scholar 

  69. Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263

    PubMed  CAS  Google Scholar 

  70. McCormack K, Tanouye MA, Iverson LE, Lin JW, Ramaswani M, McCormack T, Campanelli JT, Mathew MK, Bernardo R (1991) A role for hydrophobic residues in the voltage-dependent gating of Shaker K+ channels. Proc Natl Acad Sci USA 88:2931–2935

    PubMed  CAS  Google Scholar 

  71. Mikami A, Imoto K, Tanabe T, Niidome T, Mori Y, Takeshima H, Narumiya S, Numa S (1989) Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340:230–233

    PubMed  CAS  Google Scholar 

  72. Mishina M, Kurosaki T, Tobimatsu T, Morimoto Y, Noda M, Yamamoto T, Terao M, Lindstrom J, Takahashi T, Kuno M, Numa S (1984) Expression of functional acetylcholine receptor from cloned cDNAs. Nature 307:604–608

    PubMed  CAS  Google Scholar 

  73. Mishina M, Takai T, Imoto K, Noda M, Takahashi T, Numa S, Methfessel C, Sakmann B (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321:406–411

    PubMed  CAS  Google Scholar 

  74. Möhler H, Malherbe P, Draguhn A, Richards JG (1990) GABAA-receptors: structural requirements and sites of gene expression in mammalian brain. Neurochem Res 15: 199–207

    PubMed  Google Scholar 

  75. Monyer H, Sprengel R, Schöpfer R, Herb A, Higuchi M, Lomely H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors — molecular and functional distinction of subtypes. Science 256:1217–1221

    PubMed  CAS  Google Scholar 

  76. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354:31–36

    PubMed  CAS  Google Scholar 

  77. Müller W, Connor JA (1991) Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses. Nature 354:73–79

    PubMed  Google Scholar 

  78. Nakayama H, Taki M, Glossmann H, Catterall W, Kanaoka Y (1991) Identification of 1,4-dihydropyridine binding regions within the alpha 1 subunit of skeletal muscle Ca2+ channels by photoaffinity labeling with diazipine. Proc Natl Acad Sci USA 88:9203–9207

    PubMed  CAS  Google Scholar 

  79. Nastuk MA, Lieth E, Ma Ji, Cardasis CA, Moynihan EB, McKechnie BA, Fallon JR (1991) The putative agrin receptor binds ligand in a calcium-dependent manner and aggregates during agrin-induced acetylcholine receptor clustering. Neuron 7:807–818

    PubMed  CAS  Google Scholar 

  80. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:779–802

    Google Scholar 

  81. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148

    PubMed  CAS  Google Scholar 

  82. Noda M, Takahashi H, Tanabe T, Toyosato M, Furutani Y, Hirose T, Asai M, Inayama S, Miyata T, Numa S (1982) Primary structure of alpha-subunit precursor of Torpedo califarnica acetylcholine receptor deduces from cDNA sequence. Nature 299:793–797

    PubMed  CAS  Google Scholar 

  83. Patel J, Zinkand WC, Klika AB, Mangano TJ, Keith RA, Salama AI (1990) 6,7-Dinitroquinoxaline-2,3-dione blocks the cytotoxicity of N-methyl-d-aspartate and kainate, but not quisqualate, in cortical cultures. J Neurochem 55(1): 114–121

    PubMed  CAS  Google Scholar 

  84. Paulmichl M, Li Y, Wickman K, Ackerman M, Peralta E, Clapham D (1992) New mammalian chloride channel identified by expression cloning. Nature 356:238–241

    PubMed  CAS  Google Scholar 

  85. Pelzer D, Pelzer S, McDonald TF (1990) Properties and regulation of calcium channels in muscle cells. Rev Physiol Biochem Pharmacol 114:107–207

    PubMed  CAS  Google Scholar 

  86. Perozo E, Bezanilla F (1991) Phosphorylation of K+ channels in the squid giant axon. A mechanistic analysis. J Bioenerg Biomembr 23:599–613

    PubMed  CAS  Google Scholar 

  87. Pongs O, Kecskemethy N, Müller R, Krah-Jentgens I, Baumann A, Kiltz HH, Canal I, Llamazares S, Ferrus A (1988) Shaker encodes a family of potassium channel proteins in the nervous system of Drosophila. EMBO J 7:1087–1096

    PubMed  CAS  Google Scholar 

  88. Reinhart PH, Chung S, Martin BL, Brautigan DL, Levitan IB (1991) Modulation of calcium-activated potassium channels from rat brain by protein kinase A and phosphatase 2A. J Neurosci 11:1627–1635

    PubMed  CAS  Google Scholar 

  89. Reist NE, Werle MJ, Mcmahan UJ (1992) Agrin released by motor neurons induces the aggregation of acetylcholine-receptors at neuromuscular-junctions. Neuron 8:865–868

    PubMed  CAS  Google Scholar 

  90. Rorsman P, Trübe G (1985) Glucose-dependent K+-channels in pancreatic beta-cells are regulated by intracellular ATP. Pflugers Arch 405:305–309

    PubMed  CAS  Google Scholar 

  91. Rüdel R, Lehmann-Horn F (1985) Membrane changes in cells from myotonia patients. Physiol Rev 65:310–356

    PubMed  Google Scholar 

  92. Ruppersberg JP, Schroter KH, Sakmann B, Stocker M, Sewing S, Pongs O (1990) Heteromultimeric channels formed by rat brain potassium-channel proteins. Nature 345:535–537

    PubMed  CAS  Google Scholar 

  93. Ruppersberg JP, Frank R, Pongs O, Stocker M (1991a) Cloned neuronal IK(A) channels reopen during recovery from inactivation. Nature 353:657–660

    PubMed  CAS  Google Scholar 

  94. Ruppersberg JP, Stocker M, Pongs O, Heinemann SH, Frank R, Koenen M (1991b) Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature 352:711–714

    PubMed  CAS  Google Scholar 

  95. Sakmann B, Trube G (1984) Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol (Lond) 347:641–657

    CAS  Google Scholar 

  96. Simoncini L, Stühmer W (1987) Slow sodium channel inactivation in rat fast-twitch muscle. J Physiol (Lond) 383: 327–337

    CAS  Google Scholar 

  97. Slesinger PA, Lansman JB (1991) Reopening of Ca2+ channels in mouse cerebellar neurons at resting membrane potentials during recovery from inactivation. Neuron 7:755–762

    PubMed  CAS  Google Scholar 

  98. Sommer B, Köhler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67:11–20

    PubMed  CAS  Google Scholar 

  99. Sommer B, Keinänen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Köhler M, Takagi T, Sakmann B, Seeburg PH (1990) Flip and flop: a cell functional switch in glutamate-operated channels of the CNS. Science 249: 1580–1585

    PubMed  CAS  Google Scholar 

  100. Sommer B, Seeburg PH (1992) Glutamate receptor channels: novel properties and new clones. TIPS 13:291–296

    PubMed  CAS  Google Scholar 

  101. Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT (1989) Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 245:177–180

    PubMed  CAS  Google Scholar 

  102. Steinmeyer K, Ortland C, Jentsch TJ (1991a) Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature 354: 301–308

    PubMed  CAS  Google Scholar 

  103. Steinmeyer K, Klocke R, Ortland C, Gronemeier M, Jockusch H, Grunder S, Jentsch TJ (1991b) Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature 354:304–308

    PubMed  CAS  Google Scholar 

  104. Storm JF (1988) Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature 336:379–381

    PubMed  CAS  Google Scholar 

  105. Striessnig J, Glossmann H, Caterall WA (1990) Identification of a phenylalkylamine binding region within alpha 1 subunit of skeletal muscle Ca2+ channels. Proc Natl Acad Sci USA 87:9108–9112

    PubMed  CAS  Google Scholar 

  106. Striessnig J, Murphy BJ, Caterall WA (1991) Dihydropyridine receptor of L-type Ca2+ chanels: identification of binding domains for 3H(+)-PN200–110 and 3H-azidopine within the alpha 1 subunit. Proc Natl Acad Sci USA 88: 10769–10773

    PubMed  CAS  Google Scholar 

  107. Stühmer W, Ruppersberg JP, Schröter KH, Sakmann B, Stocker M, Giese KP, Perschke A, Baumann A, Pongs O (1989) Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. ENBO J 8:3235–3244

    Google Scholar 

  108. Stühmer W, Conti F, Suzuki H, Wang X, Noda M, Yahagi N, Kubo H, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339: 597–603

    PubMed  Google Scholar 

  109. Takumi T, Ohkubo H, Nakanishi S (1988) Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 242:1042–1045

    PubMed  CAS  Google Scholar 

  110. Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318

    PubMed  CAS  Google Scholar 

  111. Tanabe T, Beam KG, Powell J, Numa S (1988) Restoraton of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complentary DNA. Nature 336:134–138

    PubMed  CAS  Google Scholar 

  112. Terlau H, Heinemann SH, Stühmer W, Pusch M, Conti F, Imoto K, Numa S (1991) Mapping the site of block by tetrodotoxin and saxioxin of sodium channel II. FEBS Lett 293:93–96

    PubMed  CAS  Google Scholar 

  113. Thiemann A, Gründer S, Pusch M, Jentsch TJ (1992) A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356:57–60

    PubMed  CAS  Google Scholar 

  114. Toyoshima C, Unwin N (1990) Threedimensional structure of the acetylcholine receptor by cryoelectron microscopy and helical image reconstitution. J Cell 111:2623–2635

    CAS  Google Scholar 

  115. Trussel LO, Fischbach GD (1989) Glutamate receptor desen-sitization and its role in synaptic transmission. Neuron 3: 209–218

    Google Scholar 

  116. Tsien RW, Ellinore PT, Horne WA (1991) Molecular diversity of voltage-dependent Ca2+ channels. TIPS 12:349–354

    PubMed  CAS  Google Scholar 

  117. Unwin N (1989) The structure of ion channels in membranes of excitable cells. Neuron 3:665–676

    PubMed  CAS  Google Scholar 

  118. Verdoorn TA, Draguhn A, Ymer S, Seeburg PH, Sakmann B (1990) Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron 4: 919–928

    PubMed  CAS  Google Scholar 

  119. Verdoorn TA, Burnashev N, Monyer H, Seeburg PH, Sakmann B (1991) Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252:1715–1719

    PubMed  CAS  Google Scholar 

  120. Villarroel A, Sakmann B (1992) Threonine in the selectivity filter of the acetylcholine receptor channel. Biophys J 62: 209–221

    Google Scholar 

  121. Walsh KB, Kass RS (1988) Regulation of a heart potassium channel by protein kinase A and C. Science 242:67–69

    PubMed  CAS  Google Scholar 

  122. Wei A, Covarrubias M, Butler A, Baker K, Pak M, Salkoff L (1990) K+ current diversity is produced by an extended gene familiy conserved in Drosophila and mouse. Science 248: 599–603

    PubMed  CAS  Google Scholar 

  123. Welsh MJ, Anderson MP, Rich DP, Berger HA, Denning GM, Ostedgarrd LS, Sheppard DN, Cheng SH, Gregory RJ, Smith AE (1992) Cystic fibrosis transmembrane conductance regulator: a chloride channel with novel regulation. Neuron 8:821–829

    PubMed  CAS  Google Scholar 

  124. Werner P, Voigt M, Keinänen K, Wisden W, Seeburg PH (1991) Cloning of a putative high affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 351:742–744

    PubMed  CAS  Google Scholar 

  125. West JW, Numann R, Murphy BJ, Scheuer T, Caterall WA (1991) A phosphorylation site in the Na+ channel required for modulation by protein kinase C. Science 254:866–868

    PubMed  CAS  Google Scholar 

  126. Witzemann V, Brenner HR, Sakmann B (1991) Neuronal factors regulate AChR subunit mRNAs at rat neuromuscular synapses. J Cell Biol 114:125–141

    PubMed  CAS  Google Scholar 

  127. Yazawa K, Kameyama M (1990) Mechanism of receptor-mediated modulation of the delayed outward potassium current in guinea-pig ventricular myocytes. J Physiol (Lond) 421:135–150

    CAS  Google Scholar 

  128. Yellen G, Jurmann M, Abramson T, MacKinnon R (1991) Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science 251:939–942

    PubMed  CAS  Google Scholar 

  129. Yool AJ, Schwarz TL (1991) Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature 349:700–704

    PubMed  CAS  Google Scholar 

  130. Zhou J, Potts JF, Trimmer JS, Agnew WS, Sigworth FJ (1991) Multiple gating modes and the effect of modulating factors on the µl sodium channel. Neuron 7:775–785

    PubMed  CAS  Google Scholar 

  131. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38

    PubMed  CAS  Google Scholar 

  132. Kubo Y, Baldwin TJ, Jan YN, Jan LY (1993) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133

    PubMed  CAS  Google Scholar 

  133. Kubo Y, Reuveny E, Slesinger PA, Jan YN, Jan LY (1993) Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 364:802–806

    PubMed  CAS  Google Scholar 

  134. Chandy KG, Gutman G A (1993) Nomenclature for mammalian potassium channel genes. TIPS 14:434

    PubMed  CAS  Google Scholar 

  135. Kubo Y, Baldwin TJ, Jan YN, Jan LY (1993) Expression cloning of inward rectifier K+ channel cdna from j774 macrophage cell-line. Biophys J 64(A):341

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruppersberg, J.P. (1996). Ion Channels in Excitable Membranes. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics