Skip to main content

Neuronal Pathophysiology of Migraine as a Basis for Acute Treatment with 5-HT Receptor Ligands

  • Chapter
  • 357 Accesses

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 129))

Abstract

Migraine, which afflicts 12%–15% of the general population, is acknowledged as the first neurological condition which can be treated successfulIy by administering relatively selective drugs targeted to specific 5-hydroxytryptamine receptor subtypes. The receptor subtypes involved in the effects of antimigraine drugs might include 5-HT1B, 5-HT1D, and possibly 5-HT1F, as sumatriptan binds to each with high affinity. However, there is still no universal agreement as to sumatriptan’s specific mechanism of action in migraine. Some propose the importance of vascular smooth muscle constriction whereas others suggest that sumatriptan binding to neuronal receptors on trigeminovascular fibers is important for its headache-relieving action. We believe that the significance of each mechanism will become clearer as more selective 5-HT ligands are developed and applied to the human condition. Major discoveries at the preclinical level have already advanced and await testing in humans.

Note concerning the nomenclature of 5-HT1B and 5-HT1D, receptors: Receptors previously known as 5-HT1Dα, and 5-HT1Dβhave been named 5-HT1D and 5-HT1B throughout this chapter (as recommended by HARTIG et al. 1996). The prefixes h, gp, r and m are used to specify the species (human, guinea pig, rat and mouse, respectively). “5-HT1B” (with no prefix) denotes a species-specific pharmacology (high affinity for β-blockers and CP-93.129).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adham N, Bard JA, Zgombick JM, Durkin MM, Weinshank RL, Branchek TA (1996) Cloning and characterization of a recombinant guinea pig 5-HT1F receptor. Soc Neurosci Abstr 22: 528.9

    Google Scholar 

  • Anton F, Herdegen T, Peppel P, Leah JD (1991) C-fos-like immunoreactivity in rat brainstem neurons following noxious chemical stimulation of the nasal mucosa. Neuroscience 41: 629–641

    Article  PubMed  CAS  Google Scholar 

  • Battaglia G, Rustioni A (1988) Coexistence of glutamate and substance P in dorsal root ganglion cells of the rat and monkey. J Comp Neurol 277: 302–312

    Article  PubMed  CAS  Google Scholar 

  • Beattie DT, Connor HE (1995) The pre- and postjunctional activity of CP-122, 288, a conformationally restricted analogue of sumatriptan. Eur J Pharmacol 276: 271–276

    Article  PubMed  CAS  Google Scholar 

  • Bouchelet I, Cohen Z, Case B, Séguéla P, Hamel E (1996) Differential expression of sumatriptan-sensitive 5-hydroxytryptamine receptors in human trigeminal ganglia and cerebral blood vessels. Mol Pharmacol 50: 219–223

    PubMed  CAS  Google Scholar 

  • Bouhelal R, Smounya L, Bockaert J (1988) 5-HT1B receptors are negatively coupled with adenylate cyclase in rat substantia nigra. Eur J Pharmacol 151: 189–196

    Article  PubMed  CAS  Google Scholar 

  • Bruinvels AT (1993) 5-HT1D receptors reconsidered: radioligand binding assays, receptor autoradiography and in situ hybridization histochemistry in the mammalian nervous system. Thesis, University of Utrecht

    Google Scholar 

  • Bruinvels AT, Landwehrmeyer B, Moskowitz MA, Hoyer D (1992) Evidence for 5-HT1B messenger RNA in rat trigeminal ganglia. Eur J Pharmacol 227: 357–359

    Article  PubMed  CAS  Google Scholar 

  • Buzzi MG, Moskowitz MA (1990) The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater. Br J Pharmacol 99: 202–206

    Article  PubMed  CAS  Google Scholar 

  • Buzzi MG, Moskowitz MA, Peroutka SJ, Byun B (1991a) Further characterization of the putative 5-HT receptor which mediates blockade of neurogenic plasma protein extravasation in rat dura mater. Br J Pharmacol 103: 1421–1428

    Article  PubMed  CAS  Google Scholar 

  • Buzzi MG, Carter WB, Shimizu T, Heath H III, Moskowitz MA (1991b) Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacology 30: 1193–1200

    Article  PubMed  CAS  Google Scholar 

  • Caekebeke JFV, Ferrari MD, Zwetsloot CP, Jansen J, Saxena PR (1992) Antimigraine drug sumatriptan increases blood flow velocity in large cerebral arteries during migraine attacks. Neurology 42: 1522–1526

    Article  PubMed  CAS  Google Scholar 

  • Croul S, Sverstiuk A, Radzievsky A, Murray M (1995) Modulation of neurotransmitter receptors following unilateral L1-S2 deafferentation: NK1, NK3, NMDA, and 5-HT1A receptor binding autoradiography. J Comp Neurol 361: 633–644

    Article  PubMed  CAS  Google Scholar 

  • Cutrer FM, Schoenfeld D, Limmroth V, Panahian N, Moskowitz MA (1995a) Suppression by the sumatriptan analogue, CP-122, 288, of c-fos immunoreactivity in trigeminal nucleus caudalis induced by intracisternal capsaicin. Br J Pharmacol 114: 987–992

    Article  PubMed  CAS  Google Scholar 

  • Cutrer FM, Moussaoui S, Garret C, Moskowitz MA (1995b) The non-peptide neurokinin-1 antagonist, RPR 100893, decreases c-fos expression in trigeminal nucleus caudalis following noxious chemical meningeal stimulation. Neurosci 64: 741–750

    Article  CAS  Google Scholar 

  • Dauphin F, Hamel E (1992) Identification of multiple muscarinic binding site subtypes in cat and human cerebral vasculature. J Pharmacol Exp Ther 260: 660–667

    PubMed  CAS  Google Scholar 

  • Daval G, Vergé D, Basbaum A, Bourgoin S, Hamon M (1987) Autoradiographic evidence of serotonin binding sites on primary afferent fibers in the dorsal horn of the rat spinal cord. Neurosci Lett 83: 71–76

    Article  PubMed  CAS  Google Scholar 

  • Davis KD, Dostrovsky JO (1986) Activation of trigeminal brain-stem nociceptive neurons by dural artery stimulation. Pain 25: 395–401

    Article  PubMed  CAS  Google Scholar 

  • De Keyser J, Vauquelin G, De Backer JP, De Vos H, Wilczak N (1993) What intracranial tissues in humans contain sumatriptan-sensitive serotonin 5-HT1-type receptors. Neurosci Lett 164: 63–66

    Article  PubMed  Google Scholar 

  • Den Boer MO, Villalón CM, Heiligers JPC, Humphrey PPA, Saxena PR (1991) Role of 5-HT1-like receptors in the reduction of porcine cranial arteriovenous anastomotic shunting by sumatriptan. Br J Pharmacol 102: 323–330

    Article  Google Scholar 

  • Dimitriadou V, Buzzi MG, Moskowitz MA, Theoharides TC (1991) Trigeminal sensory fiber stimulation induces morphological changes in rat dura mater mast cells. Neurosci 44: 97–112

    Article  CAS  Google Scholar 

  • Dimitriadou V, Buzzi MG, Theoharides TC, Moskowitz MA (1992) Ultrastructural evidence for neurogenically mediated changes in blood vessels of the rat dura mater and tongue following antidromic trigeminal stimulation. Neuroscience 48: 187–203

    Article  PubMed  CAS  Google Scholar 

  • Dougherty PM, Willis WD (1991) Enhancement of spinothalamic neuron responses to chemical and mechanical stimuli following combined microiontophoretic application of N-methyl-D-aspartic acid and substance P. Pain 47: 85–93

    Article  PubMed  CAS  Google Scholar 

  • Dragunow M, Faull R (1989) The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Meth 29: 261–265

    Article  CAS  Google Scholar 

  • Ebersberger A, Anton F, Tölle TR, Zieglgänsberger W (1995) Morphine, 5-HT2 and 5-HT3 receptor antagonists reduce c-fos expression in the trigeminal nuclear complex following noxious chemical stimulation of the rat nasal mucosa. Brain Res 676: 336–342

    Article  PubMed  CAS  Google Scholar 

  • Eide PK, Hole K, Berge OG (1988) Mechanisms by which the putative serotonin receptor antagonist metitepin alters nociception in mice. J Neural Transm 73: 31–41

    Article  PubMed  CAS  Google Scholar 

  • Fozard JR, Kalkman HO (1994) 5-Hydroxytryptamine (5-HT) and the initiation of migraine: new perspectives. Naunyn Schmiedebergs Arch Pharmacol 350: 225–229

    Article  PubMed  CAS  Google Scholar 

  • Friberg L, Olesen J, Iversen HK, Sperling B (1991) Migraine pain associated with middle cerebral artery dilatation: Reversal by sumatriptan. Lancet 338: 13–17

    Article  PubMed  CAS  Google Scholar 

  • Goadsby PJ, Edvinsson L (1991) Sumatriptan reverses the changes in calcitonin generelated peptide seen in the headache phase of migraine. Cephalalgia 11 (Suppl 11): 3–4

    Google Scholar 

  • Goadsby PJ, Gundlach AL (1991) Localization of [3H]-dihydroergotamine binding sites in the cat central nervous system: relevance to migraine. Ann Neurol 29: 91–94

    Article  PubMed  CAS  Google Scholar 

  • Goadsby PJ, Edvinsson L (1994) Peripheral and central trigeminovascular activation in cat is blocked by the serotonin 5HT1D receptor agonist 311C90. Headache 34: 394–399

    Article  PubMed  CAS  Google Scholar 

  • Goadsby PJ, Edvinsson L, Ekman R (1988) Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 23: 193–196

    Article  PubMed  CAS  Google Scholar 

  • Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of human during migraine headache. Ann Neurol 28: 183–187

    Article  PubMed  CAS  Google Scholar 

  • Graham JR, Wolff HG (1938) Mechanism of migraine headache and action of ergotamine tartrate. Arch Neurol Psychiatr 39: 737–763

    CAS  Google Scholar 

  • Gupta P, Brown D, Butler P, Ellis P, Grayson KL, Land GC, Macor JE, Robson SF, Wythes MJ, Shepperson NB (1995) The in vivo pharmacological profile of a 5-HT1 receptor agonist, CP-122, 288, a selective inhibitor of plasma extravasation. Br J Pharmacol 116: 2385–2390

    Article  PubMed  CAS  Google Scholar 

  • Hamel E, Edvinsson L, MacKenzie E (1985) Reactivity of various cerebral arteries to vasoactive substances in different species. J Cereb Blood flow Metab 5 (Suppl 1): S553-S554

    Google Scholar 

  • Hamel E, Grégoire L, Lau B (1993a) 5-HT1 receptor mediating contraction in bovine cerebral arteries: a model for human cerebrovascular ‘5-HT1Dβ ’ receptors. Eur J Pharmacol 242: 75–82

    Article  PubMed  CAS  Google Scholar 

  • Hamel E, Fan E, Linville D, Ting V, Villemure JG, Chia LS (1993b) Expression of mRNA for the serotonin 5-hydroxytryptamine1D/β receptor subtype in human and bovine cerebral arteries. Mol Pharmacol 44: 242–246

    PubMed  CAS  Google Scholar 

  • Hamon M, Gallisot M, Ménard F, Gozlan H, Bourgoin S, Vergé D (1989) Biochemical and autoradiographic evidence of 5-HT3 receptor binding sites on capsaicinsensitive fibers in rat spinal cord. Eur J Pharmacol 164: 315–322

    Article  PubMed  CAS  Google Scholar 

  • Hartig PR, Hoyer D, Humphrey PPA, Martin GR (1996) Alignment of receptor nomenclature with the human genome: classification of 5-HT1B and 5-HT1D receptor subtypes. Trends Pharmacol Sci 17: 103–105

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PPA (1994) VII. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46: 157–203

    PubMed  CAS  Google Scholar 

  • Hoskin KL, Kaube H, Goadsby PJ (1995) A comparison of the effects of dihydroergotamine and sumatriptan of c-fos expression in the trigeminal nucleus of the cat. Cephalalgia 15 (Suppl 14): P190

    Google Scholar 

  • Huang Z, Byun B, Matsubara T, Moskowitz MA (1993) Time-dependent blockade of neurogenic plasma extravasation in dura mater by 5-HT1B/D agonists and endopeptidase 24.11. Br J Pharmacol 108: 331–335

    Article  PubMed  CAS  Google Scholar 

  • Humphrey PPA, Feniuk W (1991) Mode of action of the anti-migraine drug sumatriptan. Trends Pharmacol Sci 12: 444–446

    Article  PubMed  CAS  Google Scholar 

  • Humphrey PPA, Feniuk W, Perren MJ, Connor HE, Oxford AW, Coates IH, Butina D (1988) GR43175, a selective agonist for the 5-HT1-like receptor in dog isolated saphenous vein. Br J Pharmacol 94: 1123–1132

    Article  PubMed  CAS  Google Scholar 

  • Hunt SP, Pini A, Evan G (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328: 632–634

    Article  PubMed  CAS  Google Scholar 

  • Johnson KW, Schaus JM, Cohen ML, Audia JE, Kaldor SW, Flaugh ME, Krushinski JH, Shenk KW, Kiefer Jr AD, Nissen JS, Dressman BA, Zgombick JM, Branchek TA, Adham N, Phebus LA (1996) Inhibition of neurogenic protein extravasation in the dura via 5-HT1F receptor activation. Soc Neurosci Abstr 22: 528.10

    Google Scholar 

  • Juul R, Edvinsson L, Gisvold SE, Ekman R, Brubakk AO, Fredriksen TA (1990) Calcitonin-gene related peptide-LI in subarachnoid haemorrhage in man. Signs of activation of trigemino-cerebrovascular system? Br J Neurosurg 4: 171–180

    Article  PubMed  CAS  Google Scholar 

  • Kaube H, Hoskin KL, Goadsby PJ (1993) Inhibition by sumatriptan of central trigeminal neurones only after blood-brain barrier disruption. Br J Pharmacol 109: 788–792

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (1993) Pharmacologic analysis of drug-receptor interaction, 2nd edn. Raven, New York

    Google Scholar 

  • Knyihar-Csillik E, Tajti J, Mohtasham S, Sari G, Vecsei L (1995) Electrical stimulation of the Gasserian ganglion induces structural alterations of calcitonin gene-related peptide-immunoreactive perivascular sensory nerve terminals in the rat cerebral dura mater: a possible model of migraine headache. Neurosci Lett 184: 189–192

    Article  PubMed  CAS  Google Scholar 

  • Lasbennes F, Verrecchia C, Philipson V, Seylaz J (1992) Muscarinic binding of pial vessels and arachnoid membrane. J Neurochem 58: 2230–2235

    Article  PubMed  CAS  Google Scholar 

  • Lee WS, Moskowitz MA (1993) Conformationally restricted sumatriptan analogues, CP-122, 288 and CP-122, 638, exhibit enhanced potency against neurogenic inflammation in dura mater. Brain Res 626: 303–305

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Kawai Y, Shiosaka S, Takami K, Kiyama H, Hillyard CJ, Girgis S, MacIntyre I, Emson PC, Tohyama M (1985) Coexistence of calcitonin gene-related peptide and substance P-like peptide in single cells of the trigeminal ganglion of the rat: immunohistochemical analysis. Brain Res 330: 194–196

    Article  PubMed  CAS  Google Scholar 

  • Lee WS, Mousaoui SM, Moskowitz MA (1994) Oral or parenteral non-peptide NK1 receptor antagonist RPR 100893 blocks neurogenic plasma extravasation within guinea-pig dura mater and conjunctiva. Br J Pharmacol 112: 920–924

    Article  PubMed  CAS  Google Scholar 

  • Lee WS, Limmroth V, Ayata C, Cutrer FM, Waeber C, Yu X, Moskowitz MA (1995) Peripheral GABAA receptor mediated effects of sodium valproate on dural plasma extravasation to substance P and trigeminal stimulation. Br J Pharmacol 116: 1661–1667

    Article  PubMed  CAS  Google Scholar 

  • Leung E, Walsh LKM, Pulido-Rios MT, Eglen RM (1996) Characterization of putative 5-HT7 receptors mediating direct relaxation in Cynomolgus monkey isolated jugular vein. Br J Pharmacol 117: 926–930

    Article  PubMed  CAS  Google Scholar 

  • Linnik MD, Sakas DE, Uhl GR, Moskowitz MA (1989) Subarachnoid blood and headache: altered trigeminal tachykinin gene expression. Ann Neurol 25: 179–184

    Article  PubMed  CAS  Google Scholar 

  • MacIntyre PD, Bhargava B, Hogg KJ, Gemmill JD, Hillis WS (1993) Effect of subcutaneous sumatriptan, a selective 5-HT1 agonist, on the systemic pulmonary and coronary circulation. Circulation 87: 401–405

    Article  PubMed  CAS  Google Scholar 

  • Macor JE, Burkhart JH, Heym JH, Ives JL, Lebel LA, Newman ME, Nielsen JA, Ryan K, Schulz DW, Torgersen LK, Koe BK (1990) 3-(1, 2, 5, 6-Tetrahydropyrid-4-yl)pyrrolo[3, 2-b]pyrid-5-one: a potent and selective serotonin (5-HT1B) agonist and rotationally restricted phenolic analogue of 5-methyl-3-(l,2,5,6- tetrahydropyrid-4-yl)indole. J Med Chem 33: 2087–2093

    Article  PubMed  CAS  Google Scholar 

  • Markowitz S, Saito K, Moskowitz MA (1987) Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neuroscience 7: 4129–4136

    CAS  Google Scholar 

  • Matsubara T, Moskowitz MA, Byun B (1991) CP-93, 129, a potent and selective 5-HT1B receptor agonist, blocks neurogenic plasma extravasation within rat but not guinea pig dura mater. Br J Pharmacol 104: 3–4

    Article  PubMed  CAS  Google Scholar 

  • Matsubara T, Moskowitz MA, Huang Z (1992) UK-14, 304, R(-)-α-methyl-histamine and octreoctide (SMS201-995) block plasma protein leakage within dura mater by prejunctional mechanisms. Eur J Pharmacol 224: 145–150

    Article  PubMed  CAS  Google Scholar 

  • McCulloch J, Uddman R, Kingman TA, Edvinsson L (1986) Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proc Natl Acad Sci USA 83: 5731–5735

    Article  PubMed  CAS  Google Scholar 

  • Messlinger KB, Pawlak M, Kurosawa M, Carmody JJ (1995) Calcitonin gene-related peptide, but not substance P, mediates the increased meningeal blood flow elicited by electrical stimulation of rat dura mater encephali. In: Olesen J, Moskowitz MA (eds) Experimental headache models. Lippincott-Raven, Philadelphia (Frontiers in headache research, vol 5), p 101

    Google Scholar 

  • Middlemiss DN, Bremer ME, Smith SM (1988) A pharmacological analysis of the 5-HT receptor mediating inhibition of 5-HT release in the guinea-pig frontal cortex. Eur J Pharmacol 157: 101–107

    Article  PubMed  CAS  Google Scholar 

  • Miller KJ, King A, Demchyshyn L, Niznik H, Teitler M (1992) Agonist activity of sumatriptan and metergoline at the human 5-HT1Db receptor: further evidence for a role of the 5-HT1D receptor in the action of sumatriptan. Eur J Pharmacol 227: 99–102

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto A, Sakota T, Nishio A (1994) Characterization of 5-hydroxytryptamine receptors on the isolated pig basilar artery by functional and radioligand binding study. Jpn J Pharmacol 65: 265–273

    Article  PubMed  CAS  Google Scholar 

  • Moret C, Briley M (1993) The unique effect of methiothepin on the terminal serotonin autoreceptor in the rat hypothalamus could be an example of inverse agonism. J Psychopharmacol 7: 331–337

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz MA (1992) Neurogenic versus vascular mechanisms of sumatriptan and ergot alkaloids in migraine. Trends Pharmacol Sci 13: 307–311

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz MA (1993) Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology 43 (Suppl 3): S16-S20

    PubMed  CAS  Google Scholar 

  • Moskowitz MA, Brody M, Liu-Chen L-Y (1983) In vitro release of immunoreactive substance P from putative afferent nerve endings in bovine pia arachnoid. Neuroscience 9: 809–814

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz MA, Nozaki K, Kraig RP (1993) Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci 13: 1167–1177

    PubMed  CAS  Google Scholar 

  • Nakai K, Itakura T, Naka Y, Nakakita K, Kamei I, Imai H, Yokote H, Komai N (1986) The distribution of adrenergic receptors in cerebral blood vessels: an autoradiographic study. Brain Res 381: 148–152

    Article  PubMed  CAS  Google Scholar 

  • Nozaki K, Moskowitz MA, Boccalini P (1992a) CP-93,129, sumatriptan, dihydroergotamine block c-fos expression within rat trigeminal nucleus caudalis caused by chemical stimulation of the meninges. Br J Pharmacol 106: 409–415

    Article  PubMed  CAS  Google Scholar 

  • Nozaki K, Boccalini P, Moskowitz MA (1992b) Expression of c-fos-like immunoreactivity in brain stem after meningeal irritation by blood in subarachnoid space. Neurosci 49: 669–680

    Article  CAS  Google Scholar 

  • Olesen J, Thomsen LL, Iversen H (1994) Nitric oxide is a key molecule in migraine and other vascular headaches. Trends Pharmacol Sci 15: 149–153

    Article  PubMed  CAS  Google Scholar 

  • Onodera H, Kogure K, Ono Y, Igarashi K, Kiyota K, Nagaoka A (1989) Proto-oncogene c-fos is transiently induced in the rat cerebral cortex after forebrain ischemia. Neurosci Lett 98: 101–104

    Article  PubMed  CAS  Google Scholar 

  • O’Shaughnessy CT, Connor HE (1994) Activation of sensory nerves in guinea-pig isolated basilar artery by nicotine: evidence for inhibition of trigeminal sensory neurotransmission by sumatriptan. Eur J Pharmacol 259: 37–42

    Article  PubMed  Google Scholar 

  • Ottoson A, Hill SJ, Edvinsson L (1990) Histamine receptors in brain vessels of guinea-pig: in vitro pharmacology and ligand binding. Acta Physiol Scand 140: 135–141

    Article  Google Scholar 

  • Pauwels P, Palmier C (1994) Inhibition by 5-HT of forskolin-induced cAMP formation in the renal opossum epithelial cell line OK: mediation by a 5-HT1B-like receptor and antagonism by methiothepin. Neuropharmacology 33: 67–75

    Article  PubMed  CAS  Google Scholar 

  • Pauwels PJ, Colpaert FC (1995) The 5-HT1D receptor antagonist GR-127, 935 is an-agonist at cloned human 5-HT1Da receptor sites. Neuropharmacol 34: 235–237

    Article  CAS  Google Scholar 

  • Pelto-Huikko M, Dagerlind U, Ceccatelli S, Hoekfelt T (1991) The immediate-early genes c-fos and c-jun are differentially expressed in the rat adrenal gland after capsaicin treatment. Neurosci Lett 126: 163–166

    Article  PubMed  CAS  Google Scholar 

  • Peroutka SJ, Kuhar MJ (1984) Autoradiographic localization of 5-HT1 receptors to human and canine basilar arteries. Brain Res 310: 193–196

    Article  PubMed  CAS  Google Scholar 

  • Perren MJ, Feniuk W, Humphrey PPA (1989) The selective closure of feline carotid arteriovenous anastomoses (AVAs) by GR43175. Cephalalgia 9 (Suppl 9): 41–46

    PubMed  Google Scholar 

  • Phebus LA, Johnson KW, Audia JE, Cohen ML, Dressman BA, Fritz JE, Kaldor SW, Krushinski JH, Schenck KW, Zgombick JM, Branchek TA, Adham N, Schaus JM (1996) Characterization of LY334370, a potent and selective 5-HT1F receptor agonist, in the neurogenic dural inflammation model of migraine pain. Soc Neurosci Abstr 22: 528.11

    Google Scholar 

  • Rebeck GW, Maynard KI, Hyman BT, Moskowitz MA (1994) Selective 5-HT1Da serotonin receptor gene expression in trigeminal ganglia: implications for antimigraine drug development. Proc Natl Acad Sci USA 91: 3666–3669

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Markowitz S, Moskowitz MA (1988) Ergot alkaloids block neurogenic extravasation in dura mater: proposed action in vascular headaches. Ann Neurol 24: 732–737

    Article  PubMed  CAS  Google Scholar 

  • Saria A, Gamse R, Petermann J, Fischer JA, Theodorsson-Norheim E, Lundberg JM (1986) Simultaneous release of several tachykinins and calcitonin gene-related peptide from rat spinal cord slices. Neurosci Lett 63: 310–314

    Article  PubMed  CAS  Google Scholar 

  • Saxena PR, Tfelt-Hansen P (1993) Sumatriptan. In: Tfelt-Hansen P, Welch KMA (eds) The headaches. Raven, New York, pp 329–341

    Google Scholar 

  • Schlicker E, Fink K, Göthert M, Hoyer D, Molderings G, Roschke I, Schoeffter P (1989) The pharmacological properties of the presynaptic serotonin autoreceptor in the pig brain cortex conform to the 5-HT1D receptor subtype. Naunyn Schmiedebergs Arch Pharmacol 340: 45–51

    PubMed  CAS  Google Scholar 

  • Schoeffter P, Hoyer D (1989) 5-Hydroxytryptamine 5-HT1B and 5-HT1D receptors mediating inhibition of adenylate cyclase activity. Pharmacological comparison with special reference to the effects of yohimbine, rauwolscine and some beta-adrenoceptor antagonists. Naunyn Schmiedebergs Arch Pharmacol 340: 285–292

    PubMed  CAS  Google Scholar 

  • Schoeffter P, Hoyer D (1990) 5-Hydroxytryptamine (5-HT)-induced endothelium-dependent relaxation of pig coronary arteries is mediated by 5-HT receptors similar to the 5-HT1D receptor subtype. J Pharmacol Exp Ther 252: 387–395

    PubMed  CAS  Google Scholar 

  • Schoeffter P, Waeber C, Palacios JM, Hoyer D (1988) The 5-hydroxytryptamine 5-HT1D receptor subtype is negatively coupled to adenylate cyclase in calf substantia nigra. Naunyn Schmiedebergs Arch Pharmacol 337: 602–608

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4: 477–485

    Article  PubMed  CAS  Google Scholar 

  • Shepheard S, Williamson D, Cook D, Baker R, Street L, Matassa V, Beer M, Middlemiss, D, Iversen L, Hill R, Hargreaves R (1995a) In vivo pharmacology of a novel 5-HT1D receptor agonist, MK-462. Cephalalgia 15 (Suppl 14): 205

    Google Scholar 

  • Shepheard SL, Williamson DJ, Williams J, Hill RG, Hargreaves RJ (1995b) Comparison of the effects of sumatriptan and the NK1 antagonist CP-99, 994 on plasma extravasation in dura mater and c-fos mRNA expression in trigeminal nucleus caudalis of rats. Neuropharmacology 34: 255–261

    Article  PubMed  CAS  Google Scholar 

  • Skingle M, Beattie DT, Scopes DIC, Starkey SJ, Connor HE, Feniuk W, Tyers MB (1996) GR127935: a potent and selective 5-HT1D receptor antagonist. Behav Brain Res 73: 157–161

    Article  PubMed  CAS  Google Scholar 

  • Strassman AM, Vos BP (1993) Somatotopic and laminar organization of fos-like immunoreactivity in the medullary and upper cervical dorsal horn induced by noxious facial stimulation in the rat. J Comp Neurol 331: 495–516

    Article  PubMed  CAS  Google Scholar 

  • Strassman A, Mason P, Moskowitz M, Maciewicz R (1986) Response of brainstem trigeminal neurons to electrical stimulation of the dura. Brain Res 379: 242–250

    Article  PubMed  CAS  Google Scholar 

  • Sweet WH, Wepsic JG (1974) Controlled thermocoagulation of trigeminal ganglion and rootlets for differential destruction of pain fibers. 1. Trigeminal neuralgia. J Neurosurg 40: 143–156

    Article  PubMed  CAS  Google Scholar 

  • Thomas DR, Faruq SA, Brown AM (1995) Characterization of [35S]GTPγS binding to CHO cell membranes expressing human 5-HT1Da receptors: evidence for negative efficacy of 5-HT receptor antagonists. Br J Pharmacol 114: 153P

    Google Scholar 

  • To ZP, Bonhaus DW, Eglen RM, Jakeman LB (1995) Characterization and distribution of putative 5-HT7 receptors in guinea-pig brain. Br J Pharmacol 115: 107–116

    Article  PubMed  CAS  Google Scholar 

  • Uddman R, Edvinsson L (1989) Neuropeptides in the cerebral circulation. Cerebrovasc Brain Metab Rev 1: 230–252

    PubMed  CAS  Google Scholar 

  • Ullmer C, Schmuck K, Kalkman HO, Lübbert H (1995) Expression of serotonin receptor mRNAs in blood vessels. FEBS Lett 370: 215–221

    Article  PubMed  CAS  Google Scholar 

  • Vanhoutte PM (1978) Heterogeneity in vascular smooth muscle. In: Vanhoutte PM (ed) Serotonin and the cardiovascular system. Raven, New York, pp 181–309

    Google Scholar 

  • Waeber C, Moskowitz MA (1995a) [3H]Sumatriptan labels both 5-HT1D and 5-HT1F receptor binding sites in the guinea pig brain: an autoradiographic study. Naunyn Schmiedebergs Arch Pharmacol 352: 263–275

    Article  PubMed  CAS  Google Scholar 

  • Waeber C, Moskowitz (1995b) Autoradiographic visualization of [3H]5-carboxamidotryptamine binding sites in the guinea pig and rat brain. Eur J Pharmacol 283: 31–46

    Article  PubMed  CAS  Google Scholar 

  • Waeber C, Pinkus L, Palacios JM (1990) The (S)-isomer of [3H]zacopride labels 5-HT3 receptors with high affinity in rat brain. Eur J Pharmacol 181: 283–287

    Article  PubMed  CAS  Google Scholar 

  • Watson J, Burton M, Price GW, Jones BJ, Thomas D, Faruq A, Middlemiss DN (1995) GR127935 acts as a partial agonist at recombinant human 5-HT1Dα and 5-HT1Dβ receptors. Br J Pharmacol 114: 362P

    Google Scholar 

  • Yu X-J, Waeber C, Castanon N, Scearce K, Hen R, Macor JE, Chauveau J, Moskowitz MA (1996) 5-Carboxamidotryptamine, CP-1122, 288 and dihydroergotamine but not sumatriptan, CP-93, 129 and serotonin-5-O-carboxymethyl-glycyltyrosinamide block dural plasma protein extravasation in knockout mice that lack 5-hydroxytryptamine1B receptors. Mol Pharmacol 49: 761–765

    PubMed  CAS  Google Scholar 

  • Yu X-J, Cutrer FM, Moskowitz MA, Waeber C (1997) The 5-HT1D receptor antagonist GR-127, 935 prevents inhibitory effects of sumatriptan but not CP-122, 288 and 5-CT on neurogenic plasma extravasation within guinea pig dura mater. Neuropharmacology 36: 83–91

    Article  PubMed  CAS  Google Scholar 

  • Zagami AS, Goadsby PJ, Edvinsson L (1990) Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides 16: 69–75

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moskowitz, M.A., Waeber, C. (2000). Neuronal Pathophysiology of Migraine as a Basis for Acute Treatment with 5-HT Receptor Ligands. In: Baumgarten, H.G., Göthert, M. (eds) Serotoninergic Neurons and 5-HT Receptors in the CNS. Handbook of Experimental Pharmacology, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60921-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60921-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66715-5

  • Online ISBN: 978-3-642-60921-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics