Skip to main content

5-HT Receptors Involved in the Regulation of Hormone Secretion

  • Chapter
Serotoninergic Neurons and 5-HT Receptors in the CNS

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 129))

Abstract

The hypothalamus, particularly the paraventricular nucleus (PVN), plays a central role in coordinating and regulating neuroendocrine function. Axons from cells originating in the PVN release corticotropin-releasing hormone (CRH) into the hypophysial portal vessels. CRH is then transported to the anterior pituitary gland, where it controls the release of corticotropin (adrenocorticotropic hormone, ACTH), leading to increased secretion of adrenal glucocorticoids (cortisol in humans, corticosterone in rats) (Swanson and Sawchenk 1983; Sawchenk Swanson 1985). Activation of other cells in the PVN increases prolactin release from the anterior lobe of the pituitary gland (Bagdy and Makara 1994, 1995; Bluet Pajot et al. 1995; Rittenhouse et al. 1993; Arey and Freeman 1992: Minamitani et al. 1987; Kiss et al. 1986). Cells in the PVN and supraoptic nucleus (SON) that synthesize oxytocin and vasopressin release these peptides into the circulation from their nerve terminals in the posterior (neural) lobe of the pituitary gland (Swanson and Sawchenko 1983). Finally, cells in the PVN are also important in the regulation of renin release from the kidneys (Rittenhouse et al. 1992b; Richardson Morton et al. 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albinsson A, Palazidou E, Stephenson J, Andersson G (1994) Involvement of the 5-HT2 receptor in the 5-HT receptor-mediated stimulation of prolactin release. Eur J Pharmacol 251:157–161

    Article  PubMed  CAS  Google Scholar 

  • Alper RH (1990) Hemodynamic and renin response to (+)-DOI, a selective 5-HT2 receptor agonist, in conscious rats. Eur J Pharmacol 175:323–332

    Article  PubMed  CAS  Google Scholar 

  • Alper RH, Snider JM (1987) Activation of serotonin2 (5-HT2) receptors by quipazine increases arterial pressure and renin secretion in conscious rats. J Pharmacol Exp Ther 243:829–833

    PubMed  CAS  Google Scholar 

  • Andersen JL, Andersen LJ, Thrasher TN, Keil LC, Ramsay DJ (1994) Left heart and arterial baroreceptors interact in control of plasma vasopressin, renin, and Cortisol in awake dogs. Am J Physiol Regul Integr Comp Physiol 266:R879-R888

    CAS  Google Scholar 

  • Anderson IM, Cowen PJ (1992) Effect of pindolol on endocrine and temperature responses to buspirone in healthy volunteers. Psychopharmacology 106:428–432

    Article  PubMed  CAS  Google Scholar 

  • Arey BJ, Freeman ME (1992) Activity of oxytocinergic neurons in the paraventricular nucleus mirrors the periodicity of the endogenous stimulatory rhythm regulating prolactin secretion. Endocrinology 130:126–132

    Article  PubMed  CAS  Google Scholar 

  • Aulakh CS, Hill JL, Murphy DL (1992) Effects of various serotonin receptor subtype-selective antagonists alone and on m-chlorophenylpiperazine-induced neuroendocrine changes in rats. J Pharmacol Exp Ther 263:588–595

    PubMed  CAS  Google Scholar 

  • Aulakh CS, Mazzola-Pomietto P, Hill JL, Murphy DL (1994) Role of various 5-HT receptor subtypes in mediating neuroendocrine effects of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM) in rats. J Pharmacol Exp Ther 271:143–148

    PubMed  CAS  Google Scholar 

  • Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:641–668

    Article  PubMed  CAS  Google Scholar 

  • Bagdy G, Szemeredi K, Kanyicska B, Murphy DL (1989) Different serotonin receptors mediate blood pressure, heart rate, plasma catecholamine and prolactin responses to m-chlorophenylpiperazine in conscious rats. J Pharmacol Exp Ther 250:72–78

    PubMed  CAS  Google Scholar 

  • Bagdy G, Calogero AE, Szemeredi K, Gomez MT, Murphy DL, Chrousos GP, Gold PW (1990) β-Endorphin responses to different serotonin agonists: involvement of corticotropin-releasing hormone, vasopressin and direct pituitary action. Brain Res 537:227–232

    Article  PubMed  CAS  Google Scholar 

  • Bagdy G, Kalogeras KT, Szemeredi K (1992a) Effect of 5-HT1C and 5-HT2 receptor stimulation on excessive grooming, penile erection and plasma oxytocin concentrations. Eur J Pharmacol 229:9–14

    Article  PubMed  CAS  Google Scholar 

  • Bagdy G, Sved AF, Murphy DL, Szemeredi K (1992b) Pharmacological characterization of serotonin receptor subtypes involved in vasopressin and plasma renin activity responses to serotonin agonists. Eur J Pharmacol 210:285–289

    Article  PubMed  CAS  Google Scholar 

  • Bagdy G, Szemeredi K, Listwak SJ, Keiser HR, Goldstein DS (1993) Plasma catecholamine, renin activity, and ACTH responses to the serotonin receptor agonist DOI in juvenile spontaneously hypertensive rats. Life Sci 53:1573–1582

    Article  PubMed  CAS  Google Scholar 

  • Bagdy G, Kalogeras KT (1993) Stimulation of 5-HT1A and 5-HT2/5-HT1C receptors induce oxytocin release in the male rat. Brain Res 611:330–332

    Article  PubMed  CAS  Google Scholar 

  • Bagdy G, Makara GB (1994) Hypothalamic paraventricular nucleus lesions differentially affect serotonin-1A (5-HT 1A) and 5-HT2 receptor agonist-induced oxytocin, prolactin, and corticosterone responses. Endocrinology 134:1127–1131

    Article  PubMed  CAS  Google Scholar 

  • Bagdy G, Makara GB (1995) Paraventricular nucleus controls 5-HT2C receptor-mediated corticosterone and prolactin but not oxytocin and penile erection responses. Eur J Pharmacol 275:301–305

    Article  PubMed  CAS  Google Scholar 

  • Barofsky AL, Taylor J, Massari VJ (1983) Dorsal raphe-hypothalamic projections provide the stimulatory serotoninergic input to suckling-induced prolactin release. Endocrinology 113:1894–1903

    Article  PubMed  CAS  Google Scholar 

  • Barrett JE, Vanover KE (1993) 5-HT receptors as targets for the development of novel anxiolytic drugs: models, mechanisms and future directions. Psychopharmacology (Berl) 112:1–12

    Article  PubMed  CAS  Google Scholar 

  • Bastani B, Nash JF, Meltzer HY (1990) Prolactin and Cortisol responses to MK-212, a serotonin agonist, in obsessive-compulsive disorder. Arch Gen Psychiatry 47:833–839

    Article  PubMed  CAS  Google Scholar 

  • Blair ML, Feigl EO, Smith OA (1976) Elevation of plasma renin activity during avoidance performance in baboons. Am J Physiol 231:772–776

    PubMed  CAS  Google Scholar 

  • Bluet Pajot MT, Mounier F, Di Sciullo A, Schmidt B, Kordon C (1995) Differential sites of action of 8-OH-DPAT, a 5-HT1A agonist, on ACTH and PRL secretion in the rat. Neuroendocrinology 61:159–166

    Article  PubMed  CAS  Google Scholar 

  • Boess FG, Martin IL (1994) Molecular biology of 5-HT receptors. Neuropharmacology 33:275–317

    Article  PubMed  CAS  Google Scholar 

  • Briley M, Moret C (1993) Neurobiological mechanisms involved in antidepressant therapies. Clin Neuropharmacol 16:387–400

    Article  PubMed  CAS  Google Scholar 

  • Brownfield MS, Greathouse J, Lorens SA, Armstrong J, Urban JH, Van de Kar LD (1988) Neuropharmacological characterization of serotoninergic stimulation of vasopressin secretion in conscious rats. Neuroendocrinology 47:277–283

    Article  PubMed  CAS  Google Scholar 

  • Brownfield MS, Armstrong J, Rittenhouse PA, Li Q, Levy AD, Van de Kar LD (1992) Pharmacological differentiation of serotonergic (5-HT) stimulation of oxytocin and vasopressin secretion in the conscious rat. Neurosci Abstr 18:823 (#346.7)

    Google Scholar 

  • Callahan MF, Thore CR, Sundberg DK, Gruber KA, O’Steen K, Morris M (1992) Excitotoxin paraventricular nucleus lesions: stress and endocrine reactivity and oxytocin mRNA levels. Brain Res 597:8–15

    Article  PubMed  CAS  Google Scholar 

  • Calogero AE, Bernardini R, Margioris AN, Bagdy G, Gallucci WT, Tamarkin L, Tomai TP (1989) Effect of serotonergic agonists and antagonists on corticotropin-releasing hormone secretion by explanted rat hypothalami. Peptides 10:189–200

    Article  PubMed  CAS  Google Scholar 

  • Calogero AE, Bagdy G, Burrello N, Polosa P, D’Agata R (1995) Role for serotonin3 receptors in the control of adrenocorticotropic hormone release from rat pituitary cell cultures. Eur J Endocrinol 133:251–254

    Article  PubMed  CAS  Google Scholar 

  • Chaouloff F (1993) Physiopharmacological interactions between stress hormones and central serotonergic systems. Brain Res Rev 18:1–32

    Article  PubMed  CAS  Google Scholar 

  • Cowen PJ, Anderson IM, Grahame-Smith DG (1990) Neuroendocrine effects of azapirones. J Clin Psychopharmacol 10 [Suppl]:21S-25S

    Article  PubMed  CAS  Google Scholar 

  • Cowen PJ, Power AC, Ware CJ, Anderson IM (1994) 5-HT1A receptor sensitivity in major depression. A neuroendocrine study with buspirone. Br J Psychiatry 164:372–379

    Article  PubMed  CAS  Google Scholar 

  • Critchley DJP, Childs KJ, Middlefell VC, Dourish CT (1994) Inhibition of 8-OH-DPAT-induced elevation of plasma corticotrophin by the 5-HT1A receptor antagonist WAY100635. Eur J Pharmacol 264:95–97

    Article  PubMed  CAS  Google Scholar 

  • Crowley WR, Armstrong WE (1992) Neurochemical regulation of oxytocin secretion in lactation. Endocr Rev 13:33–65

    PubMed  CAS  Google Scholar 

  • Di Sciullo A, Bluet Pajot MT, Mounier F, Oliver C, Schmidt B, Kordon C (1990) Changes in anterior pituitary hormone levels after serotonin 1A receptor stimulation. Endocrinology 127:567–572

    Article  PubMed  Google Scholar 

  • Dourish CT, Hutson PH, Curzon G (1986) Putative anxiolytics 8-OH-DPAT, buspirone and TVX Q 7821 are agonists at 5-HT1A autoreceptors in the raphe nuclei. Trends Pharmacol Sci 7:212–214

    Article  CAS  Google Scholar 

  • Eison MS (1989) The new generation of serotonergic anxiolytics: possible clinical roles. Psychopathology 22 [Suppl 1]:13–20

    Article  PubMed  Google Scholar 

  • Entwisle SJ, Fowler PA, Thomas M, Eckland DJA, Lettis S, York M, Freedman PS (1995) The effects of oral sumatriptan, a 5-HT1 receptor agonist, on circulating ACTH and Cortisol concentrations in man. Br J Clin Pharmacol 39:389–395

    Article  PubMed  CAS  Google Scholar 

  • Fekete MIK, Szentendrei T, Kanyicska B, Palkovits M (1981) Effects of anxiolytic drugs on the catecholamine and dopac (3, 4-dihydroxyphenylacetic acid) levels in brain cortical areas and on corticosterone and prolactin secretion in rats subjected to stress. Psychoneuroendocrinology 6:113–120

    Article  PubMed  CAS  Google Scholar 

  • Feldman S, Weidenfeld J (1995) Posterior hypothalamic deafferentiation or 5,7-dihydroxytryptamine inhibit corticotropin-releasing hormone, ACTH and corticosterone responses following photic stimulation. Neurosci Lett 198:143–145

    Article  PubMed  CAS  Google Scholar 

  • Feldman S, Melamed E, Conforti N, Weidenfeld J (1984) Effect of central serotonin depletion on adrenocortical responses to neural stimuli. Exp Neurol 85:661–666

    Article  PubMed  CAS  Google Scholar 

  • Feldman S, Conforti N, Melamed E (1987) Paraventricular nucleus serotonin mediates neurally stimulated adrenocortical secretion. Brain Res Bull 18:165–168

    Article  PubMed  CAS  Google Scholar 

  • Feldman S, Weidenfeld J, Conforti N, Saphier D (1991) Differential recovery of adrenocortical responses to neural stimuli following administration of 5,7-dihydroxytryptamine into the hypothalamus. Exp Brain Res 85:144–148

    Article  PubMed  CAS  Google Scholar 

  • Feldman S, Conforti N, Weidenfeld J (1995) Limbic pathways and hypothalamic neurotransmitters mediating adrenocortical responses to neural stimuli. Neurosci Biobehav Rev 19:235–240

    Article  PubMed  CAS  Google Scholar 

  • Franceschini R, Cataldi A, Garibaldi A, Cianciosi P, Scordamaglia A, Barreca T, Rolandi E (1994) The effects of sumatriptan on pituitary secretion in man. Neuropharmacology 33:235–239

    Article  PubMed  CAS  Google Scholar 

  • Fuller RW, Snoddy HD (1990) Serotonin receptor subtypes involved in the elevation of serum corticosterone concentration in rats by direct- and indirect-acting serotonin agonists. Neuroendocrinology 52:206–211

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Borreguero D, Jacobsen FM, Murphy DL, Joseph-Vanderpool JR, Chiara A, Rosenthal NE (1995) Hormonal responses to the administration of m-chlorophenylpiperazine in patients with seasonal affective disorder and controls. Biol Psychiatry 37:740–749

    Article  PubMed  CAS  Google Scholar 

  • Gartside SE, Ellis PM, Sharp T, Cowen PJ (1992) Selective 5-HT1A and 5-HT2 receptor-mediated adrenocorticotropin release in the rat: effect of repeated antidepressant treatments. Eur J Pharmacol 221:27–33

    Article  PubMed  CAS  Google Scholar 

  • Gelfin Y, Lerer B, Lesch KP, Gorfìne M, Allolio B (1995) Complex effects of age and gender on hypothermic, adrenocorticotrophic hormone and Cortisol responses to ipsapirone challenge in normal subjects. Psychopharmacology (Berl) 120:356–364

    Article  PubMed  CAS  Google Scholar 

  • Gram LF, Christensen P (1986) Benzodiazepine suppression of Cortisol secretion: a measure of anxiolytic activity. Pharmacopsychiatry 19:19–22

    Article  PubMed  CAS  Google Scholar 

  • Groenink L, Van der Gugten J, Verdouw PM, Maes RAA, Olivier B (1995) The anxiolytic effects of flesinoxan, a 5-HT1A receptor agonist, are not related to its neuroendocrine effects. Eur J Pharmacol 280:185–193

    Article  PubMed  CAS  Google Scholar 

  • Halbreich U, Rojansky N, Palter S, Tworek H, Hissin P, Wang K (1995) Estrogen augments serotonergic activity in postmenopausal women. Biol Psychiatry 37:434–441

    Article  PubMed  CAS  Google Scholar 

  • Hollander E, DeCaria CM, Nitescu A, Gully R, Suckow RF, Cooper TB, Gorman JM, Klein DF, Liebowitz MR (1992) Serotonergic function in obsessive-compulsive disorder: behavioral and neuroendocrine responses to oral m-chlorophenylpiperazine and fenfluramine in patients and healthy volunteers. Arch Gen Psychiatry 49:21–28

    Article  PubMed  CAS  Google Scholar 

  • Hollander E, Stein DJ, DeCaria CM, Cohen L, Saoud JB, Skodol AE, Kellman D, Rosnick L, Oldham JM (1994) Serotonergic sensitivity in borderline personality disorder: preliminary findings. Am J Psychiatry 151:277–280

    PubMed  CAS  Google Scholar 

  • Hoyer D (1988) Functional correlates of serotonin 5-HT1 recognition sites. J Recept Res 8:59–81

    PubMed  CAS  Google Scholar 

  • Idres S, Delarue C, Lefebvre H, Vaudry H (1991) Benzamide derivatives provide evidence for the involvement of a 5-HT4 receptor type in the mechanism of action of serotonin in frog adrenocortical cells. Mol Brain Res 10:251–258

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen H, Knigge U, Warberg J (1992) Involvement of 5-HT1, 5-HT2, and 5-HT3 receptors in the mediation of the prolactin responses to serotonin and 5-hydroxytryptophan. Neuroendocrinology 55:336–343

    Article  PubMed  CAS  Google Scholar 

  • Kahn RS, Kling MA, Wetzler S, Asnis GM, Van Praag H (1992) Effect of m-chlorophenylpiperazine on plasma arginine-vasopressin concentrations in healthy subjects. Psychopharmacology (Berl) 108:225–228

    Article  PubMed  CAS  Google Scholar 

  • Kahn RS, Davidson M, Siever LJ, Sevy S, Davis KL (1994) Clozapine treatment and its effect on neuroendocrine responses induced by the serotonin agonist, m-chlorophenylpiperazine. Biol Psychiatry 35:909–912

    Article  PubMed  CAS  Google Scholar 

  • Kawano S, Osaka T, Kannan H, Yamashita H (1992) Excitation of hypothalamic paraventricular neurons by stimulation of the raphe nuclei. Brain Res Bull 28:573–579

    Article  PubMed  CAS  Google Scholar 

  • Kelder D, Ross SB (1992) Long lasting attenuation of 8-OH-DPAT-induced corticosterone secretion after a single injection of a 5-HT1A receptor agonist. Naunyn Schmiedebergs Arch Pharmacol 346:121–126

    Article  PubMed  CAS  Google Scholar 

  • Kellar KJ, Hulihan-Giblin BA, Mulroney SE, Lumpkin MD, Flores CM (1992) Stimulation of serotonin1A receptors increases release of prolactin in the rat. Neuropharmacology 31:643–647

    Article  PubMed  CAS  Google Scholar 

  • King BH, Brazell C, Dourish CT, Middlemiss DN (1989) MK-212 increases rat plasma ACTH concentration by activation of the 5-HT1C receptor subtype. Neurosci Lett 105:174–176

    Article  PubMed  CAS  Google Scholar 

  • Kiss JZ, Kanycska B, Nagy GY (1986) Hypothalamic paraventricular nucleus has a pivotal role in regulation of prolactin release in lactating rats. Endocrinology 119:870–873

    Article  PubMed  CAS  Google Scholar 

  • Koenig JI, Gudelsky GA, Meltzer HY (1987) Stimulation of corticosterone and beta-endorphin secretion in the rat by selective 5-HT receptor subtype activation. Eur J Pharmacol 137:1–8

    Article  PubMed  CAS  Google Scholar 

  • Koenig JI, Meltzer HY, Gudelsky GA (1988) 5-Hydroxytryptamine1A receptor-mediated effects of buspirone, gepirone and ipsapirone. Pharmacol Biochem Behav 29:711–715

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Seibyl JP, Price LH, Woods SW, Heninger GR, Aghajanian GK, Charney DS (1993) m-Chlorophenylpiperazine effects in neuroleptic-free schizophrenic patients: evidence implicating serotonergic systems in the positive symptoms of schizophrenia. Arch Gen Psychiatry 50:624–635

    Article  PubMed  CAS  Google Scholar 

  • Lang RE, Heil JWE, Ganten D, Hermann K, Unger T, Rascher W (1983) Oxytocin unlike vasopressin is a stress hormone in the rat. Neuroendocrinology 37:314–316

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre H, Contesse V, Delarue C, Soubrane C, Legrand A, Kuhn J-M, Wolf L-M, Vaudry H (1993) Effect of the serotonin-4 receptor agonist zacopride on aldosterone secretion from the human adrenal cortex: in vivo and in vitro studies. J Clin Endocrinol Metab 77:1662–1666

    Article  PubMed  CAS  Google Scholar 

  • Le Fur G, Guilloux F, Mitrani N, Miazoule J, Uzan A (1979) Relationship between plasma corticosteroids and benzodiazepines in stress. J Pharmacol Exp Ther 211:305–308

    PubMed  Google Scholar 

  • Lejeune F, Rivet J-M, Gobert A, Canton H, Millan MJ (1993) WAY 100,135 and (-)- tertatolol act as antagonists at both 5-HT1A autoreceptors and postsynaptic 5-HT1A receptors in vivo. Eur J Pharmacol 240:307–310

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP (1991) 5-HT1A receptor responsivity in anxiety disorders and depression. Prog Neuropsychopharmacol Biol Psychiatry 15:723–733

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Rupprecht R, Poten B, Muller U, Sohnle K, Fritze J (1989) Endocrine responses to 5-hydroxytryptamine-1A receptor activation by ipsapirone in humans. Biol Psychiatry 26:203–205

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Mayer M, Disselkamp-Tietze J, Hoh A, Wiesmann M, Osterheider M, Schulte HM (1990a) 5-HT1A receptor responsivity in unipolar depression. Evaluation of ipsapirone-induced ACTH and Cortisol secretion in patients and controls. Biol Psychiatry 28:620–628

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Sohnle K, Poten B, Schoellnhammer G, Rupprecht R, Schulte HM (1990b) Corticotropin and Cortisol secretion after central 5-hydroxytryptamine-1A (5-HT1A) receptor activation: effects of 5-HT receptor and β-adrenoceptor antagonists. J Clin Endocrinol Metab 70:670–674

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Schulte HM, Osterheider M, Muller T (1991) Long-term fluoxetine treatment decreases 5-HT1A receptor responsivity in obsessive-compulsive disorder. Psychopharmacology 105:415–420

    Article  PubMed  CAS  Google Scholar 

  • Levy AD, Van de Kar LD (1992) Endocrine and receptor pharmacology of serotonergic anxiolytics, antipsychotics and antidepressants. Life Sci 51:83–94

    Article  PubMed  CAS  Google Scholar 

  • Levy AD, Li Q, Alvarez Sanz MC, Rittenhouse PA, Brownfìeld MS, Van de Kar LD (1992) Repeated cocaine modifies the neuroendocrine responses to the 5-HT1C/5-HT2 receptor agonist DOI. Eur J Pharmacol 221:121–127

    Article  PubMed  CAS  Google Scholar 

  • Levy AD, Li Q, Rittenhouse PA, Van de Kar LD (1993) Investigation of the role of 5-HT, receptors in the secretion of prolactin, ACTH and renin. Neuroendocrinology 58:65–70

    Article  PubMed  CAS  Google Scholar 

  • Levy AD, Baumann MH, Van de Kar LD (1994) Monoaminergic regulation of neuroendocrine function and its modification by cocaine. Front Neuroendocrinol 15:1–72

    Article  Google Scholar 

  • Levy AD, Li Q, Gustafson M, Van de Kar LD (1995) Neuroendocrine profile of the potential anxiolytic drug S-20499. Eur J Pharmacol 274:141–149

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Rittenhouse PA. Levy AD, Alvarez Sanz MC, Van de Kar LD (1992) Neuroendocrine responses to the serotonin2 agonist DOI are differentially modified by three 5-HT1A agonists. Neuropharmacology 31:983–989

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Brownfìeld MS, Battaglia G, Cabrera TM, Levy AD, Rittenhouse PA, Van de Kar LD (1993a) Long-term treatment with the antidepressants fluoxetine and desipramine potentiates endocrine responses to the serotonin agonists 6-chloro-2-(1-piperazinyl)-pyrazine (MK-212) and (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCI (DOI). J Pharmacol Exp Ther 266:836–844

    PubMed  CAS  Google Scholar 

  • Li Q, Levy AD, Cabrera TM, Brownfìeld MS, Battaglia G, Van de Kar LD (1993b) Long-term fluoxetine, but not desipramine, inhibits the ACTH and oxytocin responses to the 5-HT1A agonist 8-OH-DPAT in male rats. Brain Res 630:148–156

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Brownfìeld MS, Levy AD, Battaglia G, Cabrera TM, Van de Kar LD (1994) Attenuation of hormone responses to the 5-HT1A agonist ipsapirone by long-term treatment with fluoxetine, but not desipramine, in male rats. Biol Psychiatry 36:300–308

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Battaglia G, Pinto W, Vicentic A, Chambers CB, Van de Kar LD (1995) Repeated injections of fluoxetine produce a delayed and gradual reduction in the ACTH and oxytocin responses to the 5-HT1A agonist 8-OH-DPAT. Soc Neurosci Abstr 21:343.13

    Google Scholar 

  • Liposits Z, Phelix C, Paull WK (1987) Synaptic interaction of serotonergic axons and corticotropin releasing factor (CRF) synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. A light and electron microscopic immunocytochemical study. Histochemistry 86:541–549

    Article  PubMed  CAS  Google Scholar 

  • Lorens SA, Van de Kar LD (1987) Differential effects of serotonin (5-HT1A and 5-HT2) agonists and antagonists on renin and corticosterone secretion. Neuroendocrinology 45:305–310

    Article  PubMed  CAS  Google Scholar 

  • Lowy MT, Meltzer HY (1988) Stimulation of serum Cortisol and prolactin secretion in humans by MK-212, a centrally active serotonin agonist. Biol Psychiatry 23:818–828

    Article  PubMed  CAS  Google Scholar 

  • Maskall DD, Zis AP, Lam RW, Clark CM, Kuan AJ (1995) Prolactin response to buspirone challenge in the presence of dopaminergic blockade. Biol Psychiatry 38:235–239

    Article  PubMed  CAS  Google Scholar 

  • Matheson GK, Gage-White D, White G, Guthrie D, Rhoades J, Dixon V (1989) The effects of gepirone and 1-(2-pyrimidinyl)-piperazine on levels of corticosterone in rat plasma. Neuropharmacology 28:329–334

    Article  PubMed  CAS  Google Scholar 

  • Matheson GK, Pfeifer DM, Weiberg MB, Michel C (1994) The effects of azapirones on serotonin1A neurons of the dorsal raphe. Gen Pharmacol 25:675–683

    Article  PubMed  CAS  Google Scholar 

  • Meller E, Bohmaker K (1994) Differential receptor reserve for 5-HT1A receptor-mediated regulation of plasma neuroendocrine hormones. J Pharmacol Exp Ther 271:1246–1252

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Maes M (1994) Effects of buspirone on plasma prolactin and Cortisol levels in major depressed and normal subjects. Biol Psychiatry 35:316–323

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY, Maes M (1995) Effect of pindolol pretreatment on MK-212-induced plasma Cortisol and prolactin responses in normal men. Biol Psychiatry 38:310–318

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY, Fang VS, Paul SM, Kaluskar R (1976) Effect of quipazine on rat plasma prolactin levels. Life Sci 19:1073–1078

    Article  PubMed  CAS  Google Scholar 

  • Minamitani N, Minamitani T, Lechan RM, Bollinger-Gruber J (1987) Paraventricular nucleus mediates prolactin secretory responses to restraint stress, ether stress, and 5-hydroxy-1-tryptophan injection in the rat. Endocrinology 120:860–867

    Article  PubMed  CAS  Google Scholar 

  • Mueller EA, Murphy DL, Sunderland T (1985) Neuroendocrine effects of m-chlorophenylpiperazine, a serotonin agonist, in humans. J Clin Endocrinol Metab 61:1179–1184

    Article  PubMed  CAS  Google Scholar 

  • Mueller EA, Murphy DL, Sunderland T (1986) Further studies of the putative serotonin agonist, m-chlorophenylpiperazine: evidence for a serotonin receptor mediated mechanism of action in humans. Psychopharmacology 89:388–391

    Article  PubMed  CAS  Google Scholar 

  • Murphy DL, Lesch KP, Aulakh CS, Pigott TA (1991) Serotonin-selective arylpiperazines with neuroendocrine, behavioral, temperature, and cardiovascular effects in humans. Pharmacol Rev 43:527–552

    PubMed  CAS  Google Scholar 

  • Nash JF, Meltzer HY (1989) Effect of gepirone and ipsapirone on the stimulated and unstimulated secretion of prolactin in the rat. J Pharmacol Exp Ther 249:236–241

    PubMed  CAS  Google Scholar 

  • Nishikawa T, Scatton B (1986) Neuroanatomical site of the inhibitory influence of anxiolytic drugs on central serotonergic transmission. Brain Res 271:123–132

    Article  Google Scholar 

  • Owens MJ, Knight DL, Ritchie JC, Nemeroff CB (1991) The 5-hydroxytryptamine2 agonist, (±)-1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane stimulates the hypothalamic-pituitary-adrenal (HPA) axis. II. Biochemical and physiological evidence for the development of tolerance after chronic administration. J Pharmacol Exp Ther 256:795–800

    PubMed  CAS  Google Scholar 

  • Pan J-T, Tai M-H (1992) Effects of ketanserin on DOI-, MCPP- and TRH-induced prolactin secretion in estrogen-treated rats. Life Sci 51:839–845

    Article  PubMed  CAS  Google Scholar 

  • Pan L, Gilbert F (1992) Activation of 5-HT1A receptor subtype in the paraventricular nuclei of the hypothalamus induces CRH ACTH release in the rat. Neuroendocrinology 56:797–802

    Article  PubMed  CAS  Google Scholar 

  • Paris JM, Lorens SA, Van de Kar LD, Urban JH, Richardson-Morton KD, Bethea CL (1987) A comparison of acute stress paradigms: hormonal responses and hypothalamic serotonin. Physiol Behav 39:33–43

    Article  PubMed  CAS  Google Scholar 

  • Pergola PE, Sved AF, Voogt JL, Alper RH (1993) Effect of serotonin on vasopressin release: a comparison to corticosterone, prolactin and renin. Neuroendocrinology 57:550–558

    Article  PubMed  CAS  Google Scholar 

  • Petrov T, Krukoff TL, Jhamandas JH (1994) Chemically defined collateral projections from the pons to the central nucleus of the amygdala and hypothalamic paraventricular nucleus in the rat. Cell Tissue Res 277:289–295

    Article  PubMed  CAS  Google Scholar 

  • Pinto W, Cabrera TM, Li Q, Van de Kar LD, Battaglia G (1994) Receptor reserve for 5-HT1A receptors in rat brain as assessed by neuroendocrine responses to 8-OH-DPAT stimulation. Soc Neurosci Abstr 19:1539 (no 632.4)

    Google Scholar 

  • Przegalinski E, Ismaiel AM, Chojnacka-Wojcik E, Budziszewska B, Tatarczynska E, Blaszczynska E (1990) The behavioural, but not the hypothermic or corticosterone, response to 8-hydroxy-2-(di-n-propylamino)-tetralin, is antagonized by NAN-190 in the rat. Neuropharmacology 29:521–526

    Article  PubMed  CAS  Google Scholar 

  • Quattrone A, Schettini G, Di Renzo G, Tedeschi G, Preziosi P (1979) Effect of midbrain raphe lesion or 5,7-dihydroxytryptamine treatment on the prolactin-releasing action of quipazine and D-fenfluramine in rats. Brain Res 174:71–79

    Article  PubMed  CAS  Google Scholar 

  • Quattrone A, Schettini G, Annunziato L, Di Renzo G (1981) Pharmacological evidence of supersensitivity of central serotonergic receptors involved in the control of prolactin secretion. Eur J Pharmacol 76:9–13

    Article  PubMed  CAS  Google Scholar 

  • Richardson Morton KD, Van de Kar LD, Lorens SA, Paris JM, Urban JH, Kunimoto K (1986) The effect of stress on renin and corticosterone secretion is blocked by electrolytic lesions in the mesencephalic dorsal raphe and hypothalamic paraventricular nuclei. Soc Neurosci Abstr 12:290.15

    Google Scholar 

  • Richardson Morton KD, Van de Kar LD, Brownfield MS, Bethea CL (1989) Neuronal cell bodies in the hypothalamic paraventricular nucleus mediate stress-induced renin and corticosterone secretion. Neuroendocrinology 50:73–80

    Article  Google Scholar 

  • Richelson E (1991) Biological basis of depression and therapeutic relevance. J Clin Psychiatry 52 [6, Suppl]:4–10

    PubMed  Google Scholar 

  • Rittenhouse PA, Bakkum EA, Van de Kar LD (1991) Evidence that the serotonin agonist, DOI, increases renin secretion and blood pressure through both central and peripheral 5-HT2 receptors. J Pharmacol Exp Ther 259:58–65

    PubMed  CAS  Google Scholar 

  • Rittenhouse PA, Bakkum EA, O’Connor PA, Carnes M, Bethea CL, Van de Kar LD (1992a) Comparison of neuroendocrine and behavioral effects of ipsapirone, a 5-HT1A agonist, in three stress paradigms: immobilization, forced swim and conditioned fear. Brain Res 580:205–214

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse PA, Li Q, Levy AD, Van de Kar LD (1992b) Neurons in the hypothalamic paraventricular nucleus mediate the serotonergic stimulation of renin secretion. Brain Res 593:105–113

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse PA, Levy AD, Li Q, Bethea CL, Van de Kar LD (1993) Neurons in the hypothalamic paraventricular nucleus mediate the serotonergic stimulation of prolactin secretion via 5-HT1C/2 receptors. Endocrinology 133:661–667

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse PA, Bakkum EA, Levy AD, Li Q, Carnes M, Van de Kar LD (1994a) Evidence that ACTH secretion is regulated by serotonin2A/2C (5-HT2A/2C) receptors. J Pharmacol Exp Ther 271:1647–1655

    PubMed  CAS  Google Scholar 

  • Rittenhouse PA, Bakkum EA, Levy AD, Li Q, Yracheta JM, Kunimoto K, Van de Kar LD (1994b) Central stimulation of renin secretion through serotonergic, noncardiovascular mechanisms. Neuroendocrinology 60:205–214

    Article  PubMed  CAS  Google Scholar 

  • Rizzi CA (1994) A serotonergic mechanism for the metoclopramide-induced increase in aldosterone level. Eur J Clin Pharmacol 47:377–378

    Article  PubMed  CAS  Google Scholar 

  • Roth BL, Ciaranello RD, Meltzer HY (1992) Binding of typical and atypical antipsychotic agents to transiently expressed 5-HT1C receptors. J Pharmacol Exp Ther 260:1361–1365

    PubMed  CAS  Google Scholar 

  • Saphier D (1991) Paraventricular nucleus magnocellular neuronal responses following electrical stimulation of the midbrain dorsal raphe. Exp Brain Res 85:359–363

    Article  PubMed  CAS  Google Scholar 

  • Saphier D, Welch JE (1994) 5-HT3 receptor activation in the rat increases adrenocortical secretion at the level of the central nervous system. Neurosci Res Commun 14:167–173

    CAS  Google Scholar 

  • Saphier D, Farrar GE, Welch JE (1995) Differential inhibition of stress-induced adrenocortical responses by 5-HT1A agonists and by 5-HT2 and 5-HT3 antagonists. Psychoneuroendocrinology 20:239–257

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW (1985) Localization, colocalization and plasticity of corticotropin-releasing factor immunoreactivity in rat brain. Fed Proc 44:221–227

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW, Steinbusch HWM, Verhofstad AAJ (1983) The distribution and cells of origin of serotonergic inputs to the paraventricular and supraoptic nuclei of the rat. Brain Res 277:355–360

    Article  PubMed  CAS  Google Scholar 

  • Saydoff JA, Rittenhouse PA, Van de Kar LD, Brownfìeld MS (1991) Enhanced serotonergic transmission stimulates oxytocin secretion in conscious male rats. J Pharmacol Exp Ther 257:95–99

    PubMed  CAS  Google Scholar 

  • Saydoff JA, Leanza F, Carnes M, Brownfìeld MS (1992) Central serotonin induces vasopressin and oxytocin secretion and a specific pattern of c-Fos expression in rat brain. Soc Neurosci Abstr 18:823 (no 346.5)

    Google Scholar 

  • Saydoff JA, Carnes M, Brownfìeld MS (1993) The role of serotonergic neurons in intravenous hypertonic saline-induced secretion of vasopressin, oxytocin, and ACTH. Brain Res Bull 32:567–572

    Article  PubMed  CAS  Google Scholar 

  • Saydoff JA, Rittenhouse PA, Carnes M, Armstrong J, Van de Kar LD, Brownfìeld MS (1996) Neuroendocrine and cardiovascular activation by serotonin: selective role of brain angiotensin in vasopressin secretion. Am J Physiol Regul Integr Comp Physiol 33:E513-E521

    Google Scholar 

  • Scholz H, Vogel U, Kurtz A (1993) Interrelation between baroreceptor and macula densa mechanisms in the control of renin secretion. J Physiol (Lond) 469:511–524

    PubMed  CAS  Google Scholar 

  • Seibyl JP, Krystal JH, Price LH, Woods SW, D’Amico C, Heninger GR, Charney DS (1991) Effects of ritanserin on the behavioral, neuroendocrine, and cardiovascular responses to meta-chlorophenylpiperazine in healthy human subjects. Psychiatry Res 38:227–236

    Article  PubMed  CAS  Google Scholar 

  • Seletti B, Benkelfat C, Blier P, Annable L, Gilbert F, de Montigny C (1995) Serotonin1A receptor activation by flesinoxan in humans. Body temperature and neuroendocrine responses. Neuropsychopharmacology 13:93–104

    Article  PubMed  CAS  Google Scholar 

  • Simonovic M, Gudelsky GA, Meltzer HY (1984) Effect of 8-hydroxy-2-(di-n-propylamino)tetralin on rat prolactin secretion. J Neural Transm 59:143–149

    Article  PubMed  CAS  Google Scholar 

  • Steardo L, Iovino M (1986) Vasopressin release after enhanced serotonergic transmission is not due to activation of the peripheral renin-angiotensin system. Brain Res 382:145–148

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6:269–324

    Article  PubMed  CAS  Google Scholar 

  • Thakore JH, Dinan TG (1995) Cortisol synthesis inhibition: a new treatment strategy for the clinical and endocrine manifestations of depression. Biol Psychiatry 37:364–368

    Article  PubMed  CAS  Google Scholar 

  • Thiebot MH, Hamon M, Soubrie P (1982) Attenuation of induced-anxiety in rats by chlordiazepoxide: role of raphe dorsalis benzodiazepine binding sites and serotoninergic neurons. Neuroscience 7:2287–2294

    Article  PubMed  CAS  Google Scholar 

  • Titeler M, Lyon RA, Davis KH, Glennon RA (1987) Selectivity of serotonergic drugs for multiple brain serotonin receptors. Biochem Pharmacol 36:3265–3271

    Article  PubMed  CAS  Google Scholar 

  • Urban JH, Van de Kar LD, Lorens SA, Bethea CL (1986) Effect of the anxiolytic drug buspirone on prolactin and corticosterone secretion in stressed and unstressed rats. Pharmacol Biochem Behav 25:457–462

    Article  PubMed  CAS  Google Scholar 

  • Van Bockstaele EJ, Biswas A, Pickel VM (1993) Topography of serotonin neurons in the dorsal raphe nucleus that send axon collaterals to the rat prefrontal cortex and nucleus accumbens. Brain Res 624:188–198

    Article  PubMed  Google Scholar 

  • Van de Kar LD (1991) Neuroendocrine pharmacology of serotonergic (5-HT) neurons. Annu Rev Pharmacol Toxicol 31:289–320

    Article  PubMed  Google Scholar 

  • Van de Kar LD (1996) Forebrain pathways mediating stress-induced renin secretion. Clin Exp Pharmacol Physiol 23: 166–170

    Article  PubMed  Google Scholar 

  • Van de Kar LD, Bethea CL (1982) Pharmacological evidence that serotonergic stimulation of prolactin secretion is mediated via the dorsal raphe nucleus. Neuroendocrinology 35:225–230

    Article  PubMed  Google Scholar 

  • Van de Kar LD, Brownfìeld MS (1993) Serotonergic neurons and neuroendocrine function. NIPS 8:202–207

    Google Scholar 

  • Van de Kar LD, Lorens SA (1979) Differential serotonergic innervation of individual hypothalamic nuclei and other forebrain regions by the dorsal and median raphe nuclei. Brain Res 162:45–54

    Article  PubMed  Google Scholar 

  • Van de Kar LD, Wilkinson CW, Ganong WF (1981) Pharmacological evidence for a role of brain serotonin in the maintenance of plasma renin activity in unanesthetized rats. J Pharmacol Exp Ther 219:85–90

    PubMed  Google Scholar 

  • Van de Kar LD, Wilkinson CW, Skrobik Y, Brownfìeld MS, Ganong WF (1982) Evidence that serotonergic neurons in the dorsal raphe nucleus exert a stimulatory effect on the secretion of renin but not of corticosterone. Brain Res 235:233–243

    Article  PubMed  Google Scholar 

  • Van de Kar LD, Lorens SA, McWilliams CR, Kunimoto K, Urban JH, Bethea CL (1984) Role of midbrain raphe in stress-induced renin and prolactin secretion. Brain Res 311:333–341

    Article  PubMed  Google Scholar 

  • Van de Kar LD, Lorens SA, Urban JH, Richardson KD, Paris J (1985a) Pharmacological studies on stress-induced renin and prolactin secretion: effects of benzodiazepines, naloxone, propranolol and diisopropylfluorophosphate (DFP). Brain Res 345:257–263

    Article  PubMed  Google Scholar 

  • Van de Kar LD, Urban JH, Lorens SA, Richardson KD (1985b) The non-benzodiazepine anxiolytic buspirone inhibits stress-induced renin secretion and lowers heart rate. Life Sci 36:1149–1155

    Article  PubMed  Google Scholar 

  • Van de Kar LD, Carnes M, Maslowski RJ, Bonadonna AM, Rittenhouse PA, Kunimoto K, Piechowski RA, Bethea CL (1989a) Neuroendocrine evidence for denervation supersensitivity of serotonin receptors: effects of the 5-HT agonist RU 24969 on corticotropin, corticosterone, prolactin and renin secretion. J Pharmacol Exp Ther 251:428–434

    PubMed  Google Scholar 

  • Van de Kar LD, Lorens SA, Urban JH, Bethea CL (1989b) Effect of selective serotonin (5-HT) agonists and 5-HT2 antagonist on prolactin secretion. Neuropharmacology 28:299–305

    Article  PubMed  Google Scholar 

  • Van de Kar LD, Urban JH, Brownfìeld MS (1990) Serotonergic regulation of renin and vasopressin secretion. In: Paoletti R, Vanhoutte PM, Brunello N, Maggi FM (eds) Serotonin. From cell biology to pharmacology and therapeutics. Kluwer Academic, Dordrecht, Netherlands, pp 123–129

    Google Scholar 

  • Van de Kar LD, Richardson Morton KD, Rittenhouse PA (1991) Stress: neuroendocrine and pharmacological mechanisms. In: Jasmin G, Cantin M (eds) Stress revisited. 1. Neuroendocrinology of stress. Methods and achievements in experimental pathology. Karger, Basel, pp 133–173

    Google Scholar 

  • Van de Kar LD, Rittenhouse PA, O’Connor P, Palionis T, Brownfìeld MS, Lent SJ, Carnes M, Bethea CL (1992) Repeated cocaine injections reduce the magnitude of the effect of the serotonin agonist MK-212 on prolactin, vasopressin, oxytocin and renin but not ACTH or corticosterone secretion. Biol Psychiatry 32:258–269

    Article  PubMed  Google Scholar 

  • Van de Kar LD, Alvarez Sanz MC, Yracheta JM, Kunimoto K, Li Q, Levy AD, Rittenhouse PA (1994) ICV injection of the serotonin 5-HT1B agonist CP-93,129 increases the secretion of ACTH, prolactin, and renin and increases blood pressure by nonserotonergic mechanisms. Pharmacol Biochem Behav 48:429–436

    Article  PubMed  Google Scholar 

  • Van de Kar LD, Li Q, Vicentini A, Battaglia G (1995a) Evidence that the prolactin response to the 5-HT1A agonist 8-OH-DPAT is mediated by Gi proteins. Soc Neurosci Abstr 21:343.14

    Google Scholar 

  • Van de Kar LD, Rittenhouse PA, Li Q, Levy AD, Brownfield MS (1995b) Hypothalamic paraventricular, but not supraoptic neurons, mediate the serotonergic stimulation of oxytocin secretion. Brain Res Bull 36:45–50

    Article  PubMed  Google Scholar 

  • Van Wijngaarden I, Tulp MTM, Soudijn W (1990) The concept of selectivity in 5-HT receptor research. Eur J Pharmacol 188:301–312

    Article  PubMed  Google Scholar 

  • VanderMaelen CP, Matheson GK, Wilderman RC, Patterson LA (1986) Inhibition of serotonergic dorsal raphe neurons by systemic and iontophoretic administration of buspirone, a non-benzodiazepine anxiolytic drug. Eur J Pharmacol 129:123–130

    Article  PubMed  CAS  Google Scholar 

  • Yatham LN, Steiner M (1993) Neuroendocrine probes of serotonergic function: a critical review. Life Sci 53:447–463

    Article  PubMed  CAS  Google Scholar 

  • Zifa E, Fillion G (1992) 5-Hydroxytryptamine receptors. Pharmacol Rev 44:401–458

    PubMed  CAS  Google Scholar 

  • Zink MH, III, Pergola PE, Doane JF, Sved AF, Alper RH (1990) Quipazine increases renin release by a peripheral hemodynamic mechanism. J Cardiovasc Pharmacol 15:1–9

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van De Kar, L.D. (2000). 5-HT Receptors Involved in the Regulation of Hormone Secretion. In: Baumgarten, H.G., Göthert, M. (eds) Serotoninergic Neurons and 5-HT Receptors in the CNS. Handbook of Experimental Pharmacology, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60921-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60921-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66715-5

  • Online ISBN: 978-3-642-60921-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics