Skip to main content

Regulation of 5-HT Release in the CNS by Presynaptic 5-HT Autoreceptors and by 5-HT Heteroreceptors

  • Chapter
Serotoninergic Neurons and 5-HT Receptors in the CNS

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 129))

Abstract

The amount of serotonin (5-hydroxytryptamine; 5-HT) released from the varicosities of the serotoninergic axon terminals in response to invading action potentials at a given frequency is by no means constant. As generally accepted now, exocytotic release of 5-HT can be significantly modified by presynaptic receptors, i.e. receptors located on the serotoninergic axon terminals (for reviews, see Moret 1985; Middlemiss 1988; Starke et al. 1989; Göthert 1990). When such receptors are stimulated by 5-HT released from the serotoninergic axon terminals, they are termed presynaptic 5-HT autoreceptors. When receptors on the serotoninergic axon terminals are activated by other transmitters released from non-serotoninergic neurons, they are denoted as presynaptic heteroreceptors. In the latter case, the axon terminals of these neurons may form axo-axonic synapses with the serotoninergic terminals, or the interacting neighbouring neurons may release their transmitter non-synaptically into the extracellular space and, thus, may influence larger neuronal territories including the serotoninergic axon terminals (Beaudet and Descarries 1978; Törk 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amenta F, Zaccheo D, Collier WL (1991) Neurotransmitters, neuroreceptors and aging. Mech Age Dev 61: 249–273

    CAS  Google Scholar 

  • Artigas F (1993) 5-HT and antidepressants: new views from microdialysis studies. Trends Pharmacol Sci 14: 262

    PubMed  CAS  Google Scholar 

  • Artigas F, Perez V, Alvarez E (1994) Pindolol induces a rapid improvement of depressed patients treated with serotonin reuptake inhibitors. Arch Gen Psychiatry 51: 248–251

    PubMed  CAS  Google Scholar 

  • Assie MB, Koek W (1996) (-)-Pindolol and (+)-tertatolol affect rat hippocampal 5-HT levels through mechanism involving not only 5-HT1A, but also 5-HT1B receptors. Neuropharmacology 35: 213–222

    PubMed  CAS  Google Scholar 

  • Auerbach SB, Hjorth S (1995) Effect of chronic administration of the selective serotonin (5-HT) uptake inhibitor citalopram on extracellular 5-HT and apparent autoreceptor sensitivity in rat forebrain in vivo. Naunyn-Schmiedeberg’s Arch Pharmacol 352: 597–606

    CAS  Google Scholar 

  • Auerbach SB, Rutter JJ, Juliano J (1991) Substituted piperazine and indole compounds increase extracellular serotonin in rat diencephalon as determined by in vivo microdialysis. Neuropharmacology 30: 307–311

    PubMed  CAS  Google Scholar 

  • Bach AWJ, Unger L, Sprengel R, Mengod G, Palacios J, Seeburg PH, Voigt MM (1993) Structure, functional expression and spatial distribution of a cloned cDNA encoding a rat 5-HT1D-like receptor. J Receptor Res 13: 479–502

    CAS  Google Scholar 

  • Bard JA, Kucharewicz SA, Zgombick JM, Weinshank RL, Branchek TA, Cohen ML (1996) Differences in ligand binding profiles between cloned rabbit and human 5-HT1Dα and 5-HT1Dβ receptors: ketanserin and methiothepin distinguish rabbit 5-HT1D receptor subtypes. Naunyn-Schmiedeberg’s Arch Pharmacol 354: 237–244

    CAS  Google Scholar 

  • Beaudet A, Descarries L (1978) The monoamine innervation of rat cerebral cortex: synaptic and nonsynaptic axon terminals. Neuroscience 3: 851–860

    PubMed  CAS  Google Scholar 

  • Beer MS, Stanton JA, Bevan Y, Chauhan NS, Middlemiss DN (1992) An investigation of the 5-HT1D receptor binding affinity of 5-hydroxytryptamine, 5-carboxamidotryptamine and sumatriptan in the central nervous system of seven species. Eur J Pharmacol 213: 193–197

    PubMed  CAS  Google Scholar 

  • Beer MS, Stanton JA, Bevan Y, Heald A, Reeve AJ, Street LJ, Matassa VG, Hargreaves RJ, Middlemiss DN (1993) L-694, 247: a potent 5-HT1D receptor agonist. Br J Pharmacol 110: 1196–1200

    PubMed  CAS  Google Scholar 

  • Blier P (1991) Terminal serotonin autoreceptor function in the rat hippocampus is not modified by pertussis and cholera toxins. Naunyn-Schmiedeberg’s Arch Pharmacol 344: 160–166

    CAS  Google Scholar 

  • Blier P, Bouchard C (1992) Effect of repeated electroconvulsive shocks on serotonergic neurons. Eur J Pharmacol 211: 365–373

    PubMed  CAS  Google Scholar 

  • Blier P, Bouchard C (1993) Functional characterization of a 5-HT3 receptor which modulates the release of 5-HT in the guinea-pig brain. Br J Pharmacol 108: 13–22

    PubMed  CAS  Google Scholar 

  • Blier P, Bouchard C (1994) Modulation of 5-HT release in the guinea-pig brain following long-term administration of antidepressant drugs. Br J Pharmacol 113: 485–495

    PubMed  CAS  Google Scholar 

  • Blier P, de Montigny C (1994) Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15: 220–226

    PubMed  CAS  Google Scholar 

  • Blier P, Bergeron R (1995) Effectiveness of pindolol with selected antidepressant drugs in the treatment of major depression. J Clin Psychopharmacol 15: 217–222

    PubMed  CAS  Google Scholar 

  • Blier P, Galzin AM, Langer SZ (1989) Diurnal variation in the function of serotonin terminals in the rat hypothalamus. J Neurochem 52: 453–459

    PubMed  CAS  Google Scholar 

  • Blier P, Monroe PJ, Bouchard C, Smith DL, Smith DJ (1993) 5-HT3 receptors which modulate [3H]5-HT release in the guinea pig hypothalamus are not autoreceptors. Synapse 15: 143–148

    PubMed  CAS  Google Scholar 

  • Bonanno G, Maura G, Raiteri M (1986) Pharmacological characterization of release-regulating serotonin autoreceptors in rat cerebellum. Eur J Pharmacol 126: 317–321

    PubMed  CAS  Google Scholar 

  • Boess FG, Martin IL (1994) Molecular biology of 5-HT receptors. Neuropharmacology 33: 275–317

    PubMed  CAS  Google Scholar 

  • Boschert U, Amara DA, Segu L, Hen R (1994) The mouse 5-hydroxytryptamine1B receptor is localized predominantly on axon terminals. Neuroscience 58: 167–182

    PubMed  CAS  Google Scholar 

  • Bosker FJ, van Esseveldt KE, Klompmakers AA, Westenberg HGM (1995) Chronic treatment with fluvoxamine by osmotic minipumps fails to induce persistent functional changes in central 5-HT1A and 5-HT1B receptors, as measured by in vivo microdialysis in dorsal hippocampus of conscious rats. Psychopharmacology 117: 358–363

    PubMed  CAS  Google Scholar 

  • Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986) Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25: 563–576

    PubMed  CAS  Google Scholar 

  • Brazell MP, Marsden CA, Nisbet AP, Routledge C (1985) The 5-HT1 receptor agonist RU-24969 decreases 5-hydroxytryptamine (5-HT) release and metabolism in the rat frontal cortex in vitro and in vivo. Br J Pharmacol 86: 209–216

    PubMed  CAS  Google Scholar 

  • Briley M, Moret C (1993a) Neurobiological mechanisms involved in antidepressant therapies. Clin Neuropharmacol 16: 387–400

    PubMed  CAS  Google Scholar 

  • Briley M, Moret C (1993b) 5-HT and antidepressants: in vitro and in vivo release studies. Trends Pharmacol Sci 14: 396–397

    PubMed  CAS  Google Scholar 

  • Bruinvels AT, Lery H, Nozulak J, Palacios JM, Hoyer D (1992) 5-HT1D binding sites in various species: similar pharmacological profile in dog, monkey, calf, guinea-pig and human brain membranes. Naunyn-Schmiedeberg’s Arch Pharmacol 346: 243–248

    CAS  Google Scholar 

  • Bühlen M, Fink K, Böing C, Göthert M (1996a) Evidence for presynaptic location of inhibitory 5-HT1Dβ -like autoreceptors in the guinea-pig brain cortex. Naunyn-Schmiedeberg’s Arch Pharmacol 353: 281–289

    Google Scholar 

  • Bühlen M, Brüss M, Bönisch H, Göthert M (1996b) Modified ligand binding properties of the naturally occurring PhE-124-Cys variant of the human 5-HT1Dβ receptor. Naunyn-Schmiedeberg’s Arch Pharmacol 353(Suppl): R91

    Google Scholar 

  • Bühlen M, Brüss M, Bönisch H, Göthert M (1996c) Modified ligand binding to the naturally occurring Phe-124-Cys variant of the human 5-HT1B receptor. Soc Neurosci Abstr 22, part 2, p 1329

    Google Scholar 

  • Butler A, Elswood CJ, Burridge J, Ireland SJ, Bunce KT, Kilpatrick GJ, Tyers MB (1990) The pharmacological characterization of 5-HT3 receptors in three isolated preparations derived from guinea-pig tissues. Br J Pharmacol 101: 591–598

    PubMed  CAS  Google Scholar 

  • Cassel J-C, Jeltsch H (1995) Serotonergic modulation of cholinergic function in the central nervous system: cognitive implications. Neuroscience 69: 1–41

    PubMed  CAS  Google Scholar 

  • Cerrito F, Raiteri M (1979) Serotonin release is modulated by presynaptic autoreceptors. Eur J Pharmacol 57: 427–430

    PubMed  CAS  Google Scholar 

  • Chaput Y, Blier P, de Montigny C (1986) In vivo electrophysiological evidence for the regulatory role of autoreceptors on serotonergic terminals. J Neurosci 6: 2796–2801

    PubMed  CAS  Google Scholar 

  • Chaput Y, de Montigny (1988) Effects of the 5-hydroxytryptamine1 receptor antagonist, BMY 7378, on 5-hydroxytryptamine neurotransmission: electrophysiological studies in the rat central nervous system. J Pharmacol Exp Ther 246: 359–370

    PubMed  CAS  Google Scholar 

  • Chopin P, Briley M (1987) Animal models of anxiety: the effect of compounds that modify 5-HT neurotransmission. Trends Pharmacol Sci 8: 383–388

    CAS  Google Scholar 

  • Chopin P, Moret C, Briley M (1994) Neuropharmacology of 5-hydroxytryptamine1B/D receptor ligands. Pharmacol Ther 62: 385–405

    PubMed  CAS  Google Scholar 

  • Claustre Y, Rouqier L, Bonvento G, Benavides J, Scatton B (1991) In vivo regulation of serotonin release by 5-HT autoreceptors and α 1-adrenoceptors in the rat and guinea-pig brain. In: Rollema H, Westerink B, Drijfhout WJ (eds) Monitoring molecules in neuroscience. Krips Repro, Meppel, The Netherlands, pp 247–249

    Google Scholar 

  • Coote JH (1990) Bulbospinal serotonergic pathways in the control of blood pressure. J Cardiovasc Pharmacol 15(Suppl 7): S35-S41

    PubMed  CAS  Google Scholar 

  • Coppen A (1967) The biochemistry of affective diseases. Br J Psychiatry 113: 1237–1264

    PubMed  CAS  Google Scholar 

  • Davidson C, Stamford J (1995) The effect of paroxetine and 5-HT-efflux in the rat dorsal raphe nucleus is potentiated by both 5-HT1A and 5-HT1B receptor antagonists. Neurosci Lett 188: 41–44

    PubMed  CAS  Google Scholar 

  • Edwards E, Harkins K, Wright G, Henn FA (1991) 5-HT1B receptors in an animal model of depression. Neuropharmacology 30: 101–105

    PubMed  CAS  Google Scholar 

  • El Mansari M, Bouchard C, Blier P (1995) Alteration of serotonin release in the guinea pig orbito-frontal cortex by selective serotonin reuptake inhibitors — relevance to obsessive-compulsive disorder. Neuropsychopharmacology 13: 117–127

    PubMed  CAS  Google Scholar 

  • El Mansari M, Blier P (1996) Functional characterization of 5-HT1D autoreceptors on the modulation of 5-HT release in guinea-pig mesencephalic raphe, hippocampus and frontal cortex. Br J Pharmacol 118: 681–689

    PubMed  CAS  Google Scholar 

  • Engel G, Göthert M, Müller-Schweinitzer E, Schlicker E, Sistonen L, Stadler PA (1983) Evidence for common pharmacological properties of [3H]5-hydroxytryptamine binding sites, presynaptic 5-hydroxytryptamine autoreceptors in CNS and inhibitory presynaptic 5-hydroxytryptamine receptors on sympathetic nerves. Naunyn-Schmiedeberg’s Arch Pharmacol 324: 116–124

    CAS  Google Scholar 

  • Engel G, Göthert M, Hoyer D, Schlicker E, Hillenbrand K (1986) Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn-Schmiedeberg’s Arch Pharmacol 332: 1–7

    CAS  Google Scholar 

  • Farnebo LO, Hamberger B (1971) Drug-induced changes in the release of 3H-monoamines from field stimulated rat brain slices. Acta Physiol Scand Suppl 371: 35–44

    PubMed  CAS  Google Scholar 

  • Farnebo LO, Hamberger B (1974) Regulation of [3H]5-hydroxytryptamine release from rat brain slices. J Pharm Pharmacol 26: 642–644

    PubMed  CAS  Google Scholar 

  • Feuerstein TJ, Allgaier C, Hertting G (1987) Possible involvement of protein kinase C (PKC) in the regulation of electrically evoked serotonin (5-HT) release from rabbit hippocampal slices. Eur J Pharmacol 139: 267–272

    PubMed  CAS  Google Scholar 

  • Feuerstein TJ, Lupp A, Hertting G (1992) Quantitative evaluation of the autoinhibitory feedback of release of 5-HT in the caudate nucleus of the rabbit where an endogenous tone on α 2-adrenoceptors does not exist. Neuropharmacology 31: 15–23

    PubMed  CAS  Google Scholar 

  • Fink K, Zentner J, Göthert M (1995) Subclassification of presynaptic 5-HT autoreceptors in the human cerebral cortex as 5-HT1Dβ receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 352: 451–454

    CAS  Google Scholar 

  • Fink K, Böing C, Göthert M (1996) Presynaptic 5-HT autoreceptors modulate N-methyl-D-aspartate-evoked 5-hydroxytryptamine release in the guinea-pig brain cortex. Eur J Pharmacol 300: 79–82

    PubMed  CAS  Google Scholar 

  • Frankfurt M, Mendelson SD, McKittrick CR, McEwen BS (1993) Alterations of serotonin receptor binding in the hypothalamus following acute denervation. Brain Res 601: 349–352

    PubMed  CAS  Google Scholar 

  • Frankfurt M, McKittrick CR, Mendelson SD, McEwen BS (1994) Effect of 5, 7-dihydroxytryptamine, ovariectomy and gonadal steroids on serotonin receptor binding in rat brain. Neuroendocrinology 59: 245–250

    PubMed  CAS  Google Scholar 

  • Frankhuyzen AL, Mulder AH (1980) Noradrenaline inhibits depolarisation-induced 3H-serotonin release from slices of rat hippocampus. Eur J Pharmacol 63: 179–182

    PubMed  CAS  Google Scholar 

  • Frazer A, Maayani S, Wolfe BB (1990) Subtypes of receptors for serotonin. Annu Rev Pharmacol Toxicol 30: 307–348

    PubMed  CAS  Google Scholar 

  • Friedman E, Wang HY (1988) Effect of chronic lithium treatment on 5-hydroxytryptamine autoreceptors and release of 5-[3H]hydroxytryptamine from rat brain cortical, hippocampal and hypothalamic slices. J Neurochem 50: 195–201

    PubMed  CAS  Google Scholar 

  • Galzin AM, Poncet V, Langer SZ (1990) 5-HT3 receptor agonists enhance the electrically-evoked release of [3H]-5-HT in guinea-pig frontal cortex slices. Br J Pharmacol 101: 307P

    Google Scholar 

  • Galzin AM, Langer SZ (1991) Modulation of 5-HT release by presynaptic inhibitory and facilitatory 5-HT receptors in brain slices. In: Langer SZ, Galzin AM, Costentin J (eds) Presynaptic receptors and neuronal transporters. (Advances in the biosciences, vol 82 Pergamon, Oxford, pp 59–62)

    Google Scholar 

  • Galzin AM, Poirier MF, Lista A, Chodkiewicz JP, Blier P, Ramdine R, Loo H, Roux FX, Redondo A, Langer SZ (1992) Characterization of the 5-hydroxytryptamine receptor modulating the release of 5-[3H]hydroxytryptamine in slices of the human neocortex. J Neurochem 59: 1293–1301

    PubMed  CAS  Google Scholar 

  • Gardier AM, Kaakola S, Erfurth A, Wurtman RJ (1992) Effects of methiothepin on changes in brain serotonin release induced by repeated administration of high doses of anoretic serotoninergic drugs. Brain Res 588: 67–74

    PubMed  CAS  Google Scholar 

  • Gardier AM, Malagié I, Trillat AC, Jacquot C, Artigas F (1996) Role of 5-HT1A autoreceptors in the mechanism of action of serotoninergic antidepressant drugs: recent findings from in vivo microdialysis studies. Fundam Clin Pharmacol 10: 16–27

    PubMed  CAS  Google Scholar 

  • Göthert M (1982) Modulation of serotonin release in the brain via presynaptic receptors. Trends Pharmacol Sci 3: 437–440

    Google Scholar 

  • Göthert M (1990) Presynaptic serotonin receptors in the CNS. Ann NY Acad Sci 604: 102–112

    PubMed  Google Scholar 

  • Göthert M (1991) Presynaptic effects of 5-HT. In: Stone TW (ed) Aspects of synaptic transmission, LTP, galanin, autonomic, 5-HT, vol. I. Taylor and Francis, London, pp 314–329

    Google Scholar 

  • Göthert M (1992) 5-Hydroxytryptamine receptors. An example for the complexity of chemical transmission of information. Arzneim Forsch/Drug Res 42: 238–246

    Google Scholar 

  • Göthert M, Weinheimer G (1979) Extracellular 5-hydroxytryptamine inhibits 5-hydroxtryptamine release from rat brain cortex slices. Naunyn-Schmiedeberg’s Arch Pharmacol 310: 93–96

    Google Scholar 

  • Göthert M, Huth H (1980) alpha-Adrenoceptor-mediated modulation of 5-hydroxytryptamine release from rat brain cortex slices. Naunyn-Schmiedeberg’s Arch Pharmacol 313: 21–26

    Google Scholar 

  • Göthert M, Schlicker E (1991) Regulation of serotonin release in the CNS by presynaptic heteroreceptors. In: Feigenbaum J, Hanani M (eds) A handbook. Presynaptic regulation of neurotransmitter release, vol II. Freund, Tel Aviv, pp 845–876

    Google Scholar 

  • Göthert M, Schlicker E (1993) Relevance of 5-HT autoreceptors for psychotropic drug action. In: Gram LF, Balant LP, Meltzer HY, Dahl SG (eds) Clinical pharmacology in psychiatry. Springer, Berlin Heidelberg New York, pp 38–51

    Google Scholar 

  • Göthert M, Huth H, Schlicker E (1981) Characterization of the receptor subtype involved in alpha-adrenoceptor-mediated modulation of serotonin release from rat brain cortex slices. Naunyn-Schmiedeberg’s Arch Pharmacol 317: 199–203

    Google Scholar 

  • Göthert M, Fink K, Frölich D, Likungu J, Molderings G, Schlicker E, Zentner J (1996) Presynaptic 5-HT auto- and heteroreceptors in the human central and peripheral nervous system. Behav Brain Res 73: 89–92

    PubMed  Google Scholar 

  • Haddjeri N, Blier P (1995) Pre- and post-synaptic effects of the 5-HT3 agonist 2-methyl-5-HT on the 5-HT system in the rat brain. Synapse 20: 54–67

    PubMed  CAS  Google Scholar 

  • Hagan RM, Hughes IE (1983) Lack of effect of chronic methiothepin treatment on 5-hydroxytryptamine autoreceptors. Br J Pharmacol 80: 513P

    Google Scholar 

  • Hamon M, Bourgoin S, Jagger J, Glowinski J (1974) Effects of LSD on synthesis and release of 5-HT in rat brain slices. Brain Res 69: 265–280

    PubMed  CAS  Google Scholar 

  • Hartig PR, Branchek TA, Weinshank RL (1992) A subfamily of 5-HT1D receptor genes. Trends Pharmacol Sci 13: 152–159

    PubMed  CAS  Google Scholar 

  • Hartig PR, Hoyer D, Humphrey PPA, Martin GR (1996) Alignment of receptor nomenclature with the human genome: classification of 5-HT1B and 5-HT1D receptor subtypes. Trends Pharmacol Sci 17: 103–105

    PubMed  CAS  Google Scholar 

  • Heuring RE, Peroutka SJ (1987) Characterization of a novel 3H-5-hydroxytryptamine binding site subtype in bovine brain membranes. J Neurosci 7: 894–903

    PubMed  CAS  Google Scholar 

  • Hide I, Yamawaki S (1989) Inactivation of presynaptic 5-HT autoreceptors by lithium in rat hippocampus. Neurosci Lett 107: 323–326

    PubMed  CAS  Google Scholar 

  • Hjorth S, Magnusson T (1988) The 5-HT1A receptor agonist, 8-OH-DPAT, preferentially activates cell body 5-HT autoreceptors in rat brain in vivo. Naunyn-Schmiedeberg’s Arch Pharmacol 338: 463–471

    CAS  Google Scholar 

  • Hjorth S, Tao R (1991) The putative 5-HT1B receptor agonist CP-93, 129 suppresses rat hippocampal 5-HT release in vivo: comparison with RU 24969. Eur J Pharmacol 209: 249–252

    PubMed  CAS  Google Scholar 

  • Hjorth S, Sharp T (1993) In vivo microdialysis evidence for central serotonin1A and serotonin1B autoreceptor blocking properties of the beta adrenoceptor antagonist (-)penbutolol. J Pharmacol Exp Ther 265: 707–712

    PubMed  CAS  Google Scholar 

  • Hotta J, Yamawaki S (1988) Possible involvement of presynaptic 5-HT autoreceptors in effect of lithium on 5-HT release in hippocampus of rat. Neuropharmacology 27: 987–992

    PubMed  CAS  Google Scholar 

  • Hoyer D, Middlemiss DN (1989) Species differences in the pharmacology of terminal 5-HT autoreceptors in mammalian brain. Trends Pharmacol Sci 10: 130–132

    PubMed  CAS  Google Scholar 

  • Hoyer D, Schoeffter P (1991) 5-HT receptors: subtypes and second messengers. J Recep Res 11: 197–214

    CAS  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PPA (1994) VII. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46: 157–203

    PubMed  CAS  Google Scholar 

  • Hutson PH, Bristow LJ, Cunningham JR, Hogg JE, Longmore J, Murray F, Pearce D, Razzague Z, Saywell K, Tricklebank MD, Young L (1995) The effects of GR 127935, a putative 5-HT1D receptor antagonist, on brain 5-HT1D metabolism, extracellular 5-HT concentration and behaviour in the guinea pig. Neuropharmacology 34: 383–392

    PubMed  CAS  Google Scholar 

  • Kalen P, Rosengren E, Lindvall O, Bjorklund A (1989) Hippocampal noradrenaline and serotonin release over 24 hours as measured by the dialysis technique in freely moving rats: correlation to behavioural activity state, effect of handling and tailpinch. Eur J Neurosci 1: 181–188

    PubMed  Google Scholar 

  • Kilpatrick GJ, Bunce KT, Tyers MB (1990) 5-HT3 receptors. Med Res Rev 10: 441–475

    PubMed  CAS  Google Scholar 

  • Kilpatrick GJ, Barnes NM, Cheng CHK, Costall B, Naylor RJ, Tyers MB (1991) The pharmacological characterization of 5-HT3 receptor binding sites in rabbit ileum: comparison with those in rat ileum and rat brain. Neurochem Int 4: 389–396

    Google Scholar 

  • Lawrence AJ, Marsden CA (1992) Terminal autoreceptor control of 5-hydroxytryptamine release as measured by in vivo microdialysis in the conscious guinea-pig. J Neurochem 58: 142–146

    PubMed  CAS  Google Scholar 

  • Leff P, Martin GR (1988) The classification of 5-hydroxytryptamine receptors. Med Res Rev 8: 187–202

    PubMed  CAS  Google Scholar 

  • Limberger N, Deicher R, Starke K (1991) Species differences in presynaptic serotonin autoreceptors: mainly 5-HT1B but possibly in addition 5-HT1D in the rat, 5-HT1D in the rabbit and guinea-pig brain cortex. Naunyn-Schmiedeberg’s Arch Pharmacol 343: 353–364

    CAS  Google Scholar 

  • Marsden CA, Martin KF, Routledge C, Brazell MP, Maidment NT (1986) Application of intracerebral dialysis and in vivo voltammetry to pharmacological and physiological studies of amine neurotransmitters. Ann NY Acad Sci 473: 106–124

    PubMed  CAS  Google Scholar 

  • Martin KF (1991) Rhythms in neurotransmitter turnover: focus on the serotonergic system. Pharmacol Ther 51: 421–429

    PubMed  CAS  Google Scholar 

  • Martin LL, Sanders-Bush E (1982) Comparison of the pharmacological characteristics of 5-HT1 and 5-HT2 binding sites with those of serotonin autoreceptors which modulate serotonin release. Naunyn-Schmiedeberg’s Arch Pharmacol 321: 165–170

    CAS  Google Scholar 

  • Martin GR, Humphrey PPA (1994) Receptors for 5-hydroxytryptamine: current perspective on classification and nomenclature. Neuropharmacology 33: 261–273

    PubMed  CAS  Google Scholar 

  • Martin KF, Hannon S, Phillips I, Heal DJ (1992) Opposing roles for 5-HT1B and 5-HT3 receptors in the control of 5-HT release in rat hippocampus in vivo. Br J Pharmacol 106: 139–142

    PubMed  CAS  Google Scholar 

  • Massot O, Rousselle JC, Fillion MP, Grimaldi B, Cloëz-Tayarani I, Fugelli A, Prudhomme N, Seguin L, Rousseau B, Plantefol M, Hen R, Fillion G (1996) 5-Hydroxytryptamine-moduline, a new endogenous cerebral peptide, controls the serotonergic activity via its specific interaction with 5-hydroxytryptamine1B/1D receptors. Mol Pharmacol 50: 752–762

    PubMed  CAS  Google Scholar 

  • Matsumoto I, Combs MR, Jones DJ (1992) Characterization of 5-hydroxytryptamine1B receptors in rat spinal cord via [125I]-iodocyanopindolol binding and inhibition of [3H]-5-hydroxytryptamine release. J Pharmacol Exp Ther 260: 614–626

    PubMed  CAS  Google Scholar 

  • Maura G, Raiteri M (1984) Functional evidence that chronic drugs induce adaptive changes of central autoreceptors regulating serotonin release. Eur J Pharmacol 97: 309–313

    PubMed  CAS  Google Scholar 

  • Maura G, Roccatagliata E, Raiteri M (1986) Serotonin autoreceptor in rat hippocampus: pharmacological characterization as a subtype of the 5-HT1 receptor. Naunyn-Schmiedeberg’s Arch Pharmacol 334: 323–326

    CAS  Google Scholar 

  • Maura G, Thellung S, Andriolo GC, Ruelle A, Raiteri M (1993) Release-regulating serotonin 5-HT1D autoreceptors in human cerebral cortex. J Neurochem 60: 1179–1182

    PubMed  CAS  Google Scholar 

  • Metcalf MA, McGuffin RW, Hamblin MW (1992) Conversion of the human 5-HT1Dβ serotonin receptor to the rat 5-HT1B ligand-binding phenotype by Thr355Asn site directed mutagenesis. Biochem Pharmacol 44: 1917–1920

    PubMed  CAS  Google Scholar 

  • Middlemiss DN (1988) Autoreceptors regulating serotonin release. In: Sanders-Bush E (ed) The serotonin receptors. Humana, Clifton, NJ, pp 201–224

    Google Scholar 

  • Middlemiss DN, Hutson P (1990) The 5-HT1B receptors. Ann NY Acad Sci 600: 132–147

    PubMed  CAS  Google Scholar 

  • Molderings GJ, Frölich D, Likungu J, Göthert M (1996) Inhibition of noradrenaline release via presynaptic 5-HT1Dα receptors in human atrium. Naunyn-Schmiedeberg’s Arch Pharmacol 353: 272–280

    CAS  Google Scholar 

  • Moret C (1985) Pharmacology of the serotonin autoreceptor. In: Green AR (ed) Neuropharmacology of serotonin. Oxford University Press, Oxford, pp 21–49

    Google Scholar 

  • Moret C, Briley M (1990) Serotonin autoreceptor subsensitivity and antidepressant activity. Eur J Pharmacol 180: 351–356

    PubMed  CAS  Google Scholar 

  • Moret C, Briley M (1993) The unique effect of methiothepin on the terminal serotonin autoreceptor in the rat hypothalamus could be an example of inverse agonism. J Psychopharmacol 7: 331–337

    PubMed  CAS  Google Scholar 

  • Moret C, Briley M (1995) In vitro and in vivo activity of 1-(1-naphthyl)piperazine at terminal 5-HT autoreceptors in guinea-pig brain. Naunyn-Schmiedeberg’s Arch Pharmacol 351: 377–384

    CAS  Google Scholar 

  • Murphy RM, Zemlan FP (1989) Functional change in the 5-HT presynaptic receptor in spinal cord of aged rats. Neurobiol Aging 10: 95–97

    PubMed  CAS  Google Scholar 

  • Nöthen MM, Erdmann J, Shimron-Abarbanell D, Propping P (1995) Identification of genetic variation in the human serotonin IDβ receptor gene. Biochem Biophys Res Comm 202: 1194–1200

    Google Scholar 

  • Oksenberg D, Marsters SA, O’Dowd BF, Jun H, Havlik S, Peroutka SJ, Ashkenazi A (1992) A single amino-acid difference confers major pharmacological variation between human and rodent 5-HT1B receptors. Nature 360: 161–163

    PubMed  CAS  Google Scholar 

  • Ormandy GC (1993) Increased cyclic AMP reduces 5-HT1D receptor-mediated inhibition of [3H]5-hydroxytryptamine release from guinea-pig cortical slices. Eur J Pharmacol Mol Pharmacol Sect 244: 189–192

    CAS  Google Scholar 

  • Oxford SJ, Warwick RO (1987) Differential effects of nialamide and clomipramine on serotonin efflux and autoreceptors. Pharmacol Biochem Behav 26: 593–600

    Google Scholar 

  • Parker EM, Grisel DA, Ibhen LG, Shapiro RA (1993) A single amino acid difference accounts for the pharmacological distinctions between the rat and human 5-hydroxytryptamine1B receptors. J Neurochem 60: 380–383

    PubMed  CAS  Google Scholar 

  • Passarelli F, Costa T, Almeida OFX (1988) Pertussis toxin inactivates the presynaptic serotonin autoreceptor in the hippocampus. Eur J Pharmacol 155: 297–299

    PubMed  CAS  Google Scholar 

  • Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes. Annu Rev Neurosci 11: 45–60

    PubMed  CAS  Google Scholar 

  • Peroutka SJ (1991) VI. Serotonin receptor subtypes and neuropsychiatric diseases: Focus on 5-HT1D and 5-HT3 receptor agents. Pharmacol Rev 43: 579–586

    PubMed  CAS  Google Scholar 

  • Peters JA, Lambert JJ (1989) Electrophysiology of 5-HT3 receptors in neuronal cell lines. Trends Pharmacol Sci 10: 172–175

    PubMed  CAS  Google Scholar 

  • Petty F, Kramer G, Wilson L (1992) Prevention of learned helplessness — In vivo correlation with cortical serotonin. Pharmacol Biochem Behav 43: 361–367

    PubMed  CAS  Google Scholar 

  • Pineyro G, de Montigny C, Blier P (1995a) 5-HT1D receptors regulate 5-HT release in the rat raphe nuclei — in vivo voltammetry and in vitro superfusion studies. Neuropsychopharmacology 13: 249–260

    PubMed  CAS  Google Scholar 

  • Pineyro G, Castanon N, Hen R, Blier P (1995b) Regulation of [3H]5-HT release in raphe, frontal cortex and hippocampus of 5-HT1B knock-out mice. NeuroReport 7: 353–359

    PubMed  CAS  Google Scholar 

  • Pineyro G, de Montigny C, Weiss M, Blier P (1996) Autoregulatory properties of dorsal raphe 5-HT neurons. Possible role of electronic coupling and 5-HT1D receptors in the rat brain. Synapse 22: 54–62

    PubMed  CAS  Google Scholar 

  • Price GW, Burton MJ, Roberts C, Watson J, Duckworth M, Gaster L, Middlemiss DN, Jones BJ (1996) SB 216641 and BRL 15572 pharmacologically discriminate between 5-HT1B and 5-HT1D receptors. Br J Pharmacol 119: 301P

    Google Scholar 

  • Ramdine R, Galzin AM, Langer SZ (1989) Phorbol-12,13-dibutyrate antagonizes while forskolin potentiates the presynaptic autoreceptor-mediated inhibition of [3H]-5-hydroxytryptamine release in rat hypothalamic slices. Synapse 3: 173–181

    PubMed  CAS  Google Scholar 

  • Roberts C, Watson J, Burton M, Price GW, Jones BJ (1996) Functional characterization of the 5-HT terminal autoreceptor in the guinea-pig brain cortex. Br J Pharmacol 117: 384–388

    PubMed  CAS  Google Scholar 

  • Robertson B, Bevan S (1991) Properties of 5-hydroxytryptamine3 receptor-gated currents in adult rat dorsal root ganglion neurones. Br J Pharmacol 102: 272–276

    PubMed  CAS  Google Scholar 

  • Rollema H, Clarke T, Sprouse JS, Schulz DW (1996) Combined administration of a 5-hydroxytryptamine (5-HT)1D antagonist and a 5-HT reuptake inhibitor synergistically increases 5-HT release in guinea pig hypothalamus in vivo. J Neurochem 67: 2204–2207

    PubMed  CAS  Google Scholar 

  • Saudou F, Amara DA, Dierich A, Le Meur M, Ramboz S, Segu L, Buhot MC, Hen R (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265: 1875–1878

    PubMed  CAS  Google Scholar 

  • Schechter LE, Bolanos FJ, Gozlan H, Lanfumey L, Haj-Dahmane S, Laporte AM, Fattaccini CM, Hamon M (1990) Alterations of central serotoninergic and dopaminergic neurotransmission in rats chronically treated with ipsapirone: biochemical and electrophysiological studies. J Pharmacol Exp Ther 255: 1335–1347

    PubMed  CAS  Google Scholar 

  • Schipper J (1990) Pharmacological characterization of serotonin autoreceptors. Pharmacol Toxicol 66 (Suppl 3): 149

    Google Scholar 

  • Schipper J, Tulp MTM (1988) Serotonin autoreceptors in guinea pig cortex slices resemble the 5-HT1D binding site. Soc Neurosci Abstr 14: 552

    Google Scholar 

  • Schlicker E, Brandt F, Classen K, Göthert M (1985) Serotonin release in human cerebral cortex and its modulation via serotonin receptors. Brain Res 331: 337–341

    PubMed  CAS  Google Scholar 

  • Schlicker E, Fink K, Classen K, Göthert M (1987) Facilitation of serotonin (5-HT) release in the rat brain cortex by cAMP and probable inhibition of adenylate cyclase in 5-HT nerve terminals by presynaptic α 2-adrenoceptors. Naunyn-Schmiedeberg’s Arch Pharmacol 336: 251–256

    CAS  Google Scholar 

  • Schlicker E, Classen K, Göthert M (1988) Presynaptic serotonin receptors and α- adrenoceptors on central serotoninergic and noradrenergic neurons of normoten-sive and spontaneously hypertensive rats. J Cardiovasc Pharmacol 11: 518–528

    PubMed  CAS  Google Scholar 

  • Schlicker E, Betz R, Göthert M (1989) Investigation into the age-dependence of release of serotonin and noradrenaline in the rat brain cortex and of autoreceptormediated modulation of release. Neuropharmacology 28: 811–815

    PubMed  CAS  Google Scholar 

  • Schlicker E, Glaser T, Lümmen G, Neise A, Göthert M (1991) Serotonin and histamine receptor-mediated inhibition of serotonin and noradrenaline release in rat brain cortex under nimodipine treatment. Neurochem Int 19: 437–444

    CAS  Google Scholar 

  • Schlicker E, Fink K, Zentner J, Göthert M (1996) Presynaptic inhibitory serotonin autoreceptors in the human hippocampus. Naunyn-Schmiedeberg’s Arch Pharmacol 354: 393–396

    CAS  Google Scholar 

  • Schlicker E, Fink K, Molderings GJ, Price GW, Middlemiss DN, Zentner J, Likungu J, Göthert M (1997) Effects of SB 216641 and BRL 15572 (selective h5-HT1B and h5-HT1D receptor antagonists, respectively) on guinea-pig and human 5-HT auto- and heteroreceptors. Br J Pharmacol 120: 143P

    Google Scholar 

  • Schoeffter P, Hoyer D (1990) 5-Hydroxytryptamine (5-HT)-induced endothelium-dependent relaxation of pig coronary arteries is mediated by 5-HT receptors similar to the 5-HT1D receptor subtype. J Pharmacol Exp Ther 252: 387–395

    PubMed  CAS  Google Scholar 

  • Schoeffter P, Hoyer D (1991) Interaction of the α-adrenoceptor agonist oxymetazoline with serotonin 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors. Eur J Pharmacol 196: 213–216

    PubMed  CAS  Google Scholar 

  • Schoups AA, De Potter WP (1988) Species dependence of adaptations at the pre- and postsynaptic serotonergic receptors following long-term antidepressant drug treatment. Biochem Pharmacol 37: 4451–4460

    PubMed  CAS  Google Scholar 

  • Sharp T, Bramwell SR, Grahame-Smith DG (1989) 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. Br J Pharmacol 96: 283–290

    PubMed  CAS  Google Scholar 

  • Sherman AD, Allers GL, Petty F, Henn FA (1979) A neuropharmacologically relevant animal model of depression. Neuropharmacology 18: 891–894

    PubMed  CAS  Google Scholar 

  • Siever LJ, Kahn RS, Lawlor BA, Trestman RL, Lawrence TL, Coccaro EF (1991) Critical issues in defining the role of serotonin in psychiatric diseases. Pharmacol Rev 43: 509–525

    PubMed  CAS  Google Scholar 

  • Singer EA (1988) Transmitter release from brain slices elicited by single pulses: a powerful method to study presynaptic mechanisms. Trends Pharmacol Sci 9: 274–276

    PubMed  CAS  Google Scholar 

  • Singh A, Redfern P (1994a) Lack of circadian variation in the sensitivity of rat terminal 5-HT1B autoreceptors. J Pharm Pharmacol 46: 366–370

    PubMed  CAS  Google Scholar 

  • Singh A, Redfern P (1994b) Guinea pig terminal 5-HT1D autoreceptors do not display a circadian variation in their responsiveness to serotonin. Chronobiol Int 11: 165–172

    PubMed  CAS  Google Scholar 

  • Skingle M, Sleight AJ, Feniuk W (1995) Effects of the 5-HT1D receptor antagonist GR 127 935 on extracellular levels of 5-HT in the guinea-pig frontal cortex as measured by microdialysis. Neuropharmacology 34: 377–382

    PubMed  CAS  Google Scholar 

  • Sleight AJ, Cervenka A, Peroutka SJ (1990) In vivo effects of sumatriptan (GR 43175) on extracellular levels of 5-HT in the guinea pig. Neuropharmacology 29: 511–513

    PubMed  CAS  Google Scholar 

  • Sprouse JS, Aghajanian GK (1986) (-)-Propranolol blocks the inhibition of serotonergic dorsal raphe cell firing by 5-HT1A selective agonists. Eur J Pharmacol 128: 295–298

    PubMed  CAS  Google Scholar 

  • Sprouse JS, Aghajanian GK (1987) Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1: 3–9

    PubMed  CAS  Google Scholar 

  • Starke K (1981) Presynaptic receptors. Annu Rev Pharmacol Toxicol 21: 7–30

    PubMed  CAS  Google Scholar 

  • Starke K, Göthert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69: 864–989

    PubMed  CAS  Google Scholar 

  • Starkey SJ, Skingle M (1994) 5-HT1D as well as 5-HT1A autoreceptors modulate 5-HT release in the guinea-pig dorsal raphe nucleus. Neuropharmacology 33: 393–402

    PubMed  CAS  Google Scholar 

  • Timmermans PBMWM, Thoolen MJC (1987) Autoreceptors in the central nervous system. Med Res Rev 7: 307–332

    PubMed  CAS  Google Scholar 

  • Törk I (1990) Anatomy of the serotonergic system. Ann NY Acad Sci 600: 9–34

    PubMed  Google Scholar 

  • Vandijken HH, Mos J, van der Heyden JAM, Tilders FJH (1992a) Characterization of stress-induced long-term behavioural changes in rats — Evidence in favour of anxiety. Physiol Behav 52: 945–951

    CAS  Google Scholar 

  • Vandijken HH, van der Heyden JAM, Mos J, Tilders FJH (1992b) Inescapable footshocks induce progressive and long-lasting behavioural changes in male rats. Physiol Behav 51: 787–794

    CAS  Google Scholar 

  • Vanhoutte PM, Humphrey PPA, Spedding M (1996) X. International Union of Pharmacology Recommendations for nomenclature of new receptor subtypes. Pharmacol Rev 48: 1–2

    PubMed  CAS  Google Scholar 

  • Versteeg DHG, Csikós T, Spierenburg H (1991) Stimulus-evoked release of tritiated monoamines from rat periaqueductal gray slices in vitro and its receptor-mediated modulation. Naunyn-Schmiedeberg’s Arch Pharmacol 343: 595–602

    CAS  Google Scholar 

  • Waeber C, Schoeffter P, Palacios JM, Hoyer D (1988) Molecular pharmacology of 5-HT1D recognition sites: radioligand binding studies in human, pig and calf brain membranes. Naunyn-Schmiedeberg’s Arch Pharmacol 337: 595–601

    CAS  Google Scholar 

  • Waeber C, Schoeffter P, Palacios JM, Hoyer D (1989) 5-HT1D receptors in guinea-pig and pigeon brain. Naunyn-Schmiedeberg’s Arch Pharmacol 340: 479–485

    CAS  Google Scholar 

  • Wang HY, Friedman E (1987) Protein kinase C: regulation of serotonin release from rat brain cortical slices. Eur J Pharmacol 141: 15–21

    PubMed  CAS  Google Scholar 

  • Wang HY, Friedman E (1988) Chronic lithium: desensitization of autoreceptors mediating serotonin release. Psychopharmacology 94: 312–314

    PubMed  CAS  Google Scholar 

  • Weinshank RL, Branchek T, Hartig PR (1991) International Application Patent, International Publication Number WO 91/17174, November 14, 1991

    Google Scholar 

  • Wichmann T, Limberger N, Starke K (1989) Release and modulation of release of serotonin in rabbit superior colliculus. Neuroscience 32: 141–151

    PubMed  CAS  Google Scholar 

  • Wilkinson LO, Middlemiss DN (1992) Metitepine distinguishes two receptors mediating inhibition of [3H]-5-hydroxytryptamine release in guinea pig hippocampus. Naunyn-Schmiedeberg’s Arch Pharmacol 345: 696–699

    CAS  Google Scholar 

  • Wilkinson LO, Hawkins LM, Beer MS, Hibert MF, Middlemiss DN (1993) Stereoselective actions of the isomers of metitepine at 5-HT1D receptors in the guinea pig brain. Neuropharmacology 32: 205–208

    PubMed  CAS  Google Scholar 

  • Wolf WA, Kuhn DM, Lovenberg W (1985) Serotonin and central regulation of arterial blood pressure. In: Vanhoutte PM (ed) Serotonin and the cardiovascular system. Raven, New York, pp 63–73

    Google Scholar 

  • Yakel JL, Jackson MB (1988) 5-HT3 receptors mediate rapid responses in cultured hippocampus and a clonal cell line. Neuron 1: 615–621

    PubMed  CAS  Google Scholar 

  • Yakel JL (1992) 5-HT3 receptors as cation channels. In: Hamon M (ed) Central and peripheral 5-HT3 receptors. Academic, London pp 103–128

    Google Scholar 

  • Yang L, Jacocks HM, Helke CJ (1994) Release of [3H]5-hydroxytryptamine from the intermediate area of rat thoracic spinal cord is modulated by presynaptic autoreceptors. Synapse 18: 198–204

    PubMed  CAS  Google Scholar 

  • Zgombick JM, Schechter LE, Kucharewicz SA, Weinshank RL, Branchek TA (1995) Ketanserin and ritanserin discriminate between recombinant human 5-HT1Dα and 5-HT1Dβ receptor subtypes. Eur J Pharmacol 291: 9–15

    PubMed  CAS  Google Scholar 

  • Zifa E, Fillion G (1992) 5-Hydroxytryptamine receptors. Pharmacol Rev 44: 401–458

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Göthert, M., Schlicker, E. (2000). Regulation of 5-HT Release in the CNS by Presynaptic 5-HT Autoreceptors and by 5-HT Heteroreceptors. In: Baumgarten, H.G., Göthert, M. (eds) Serotoninergic Neurons and 5-HT Receptors in the CNS. Handbook of Experimental Pharmacology, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60921-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60921-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66715-5

  • Online ISBN: 978-3-642-60921-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics