Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 332 Accesses

Abstract

The prognosis for patients with breast cancer is closely related to the size and stage of the lesion at the time of diagnosis. For this reason, any technological improvement that holds promise to detect breast cancers of smaller size and at an earlier stage must be closely scrutinized. Despite improvements in ultrasound and contrast-enhanced magnetic resonance imaging of the breast, x-ray mammography maintains its role as the method of choice to screen asymptomatic women to detect early-stage breast cancer (Feig 1994; Vogel 1994). The effectiveness of mammography in detecting early disease correlates closely with the image quality achieved with the specific system. Digital systems intended for mammography must thus equal the quality requirements established for conventional film-screen systems and offer significant advantages that alleviate existing shortcomings. The rapid retrieval of archived images in a digital picture archival and communications system (PACS) could be one of these improvements. The most important potential advantage, however, promises to be the implementation of computer-assisted detection (CAD) algorithms which are specifically intended for a screening situation. It is the continuous improvement of CAD techniques for mammography screening that has increased interest in digital mammography more than a decade after the first commercial systems became available (Sonoda et al. 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • André, Olson L, Spivey B, Ysreal M, Tran J (1994) Full-view digital mammography with a small-field image-stitching approach: image quality and initial clinical results. Radiology 193 (P): 476

    Google Scholar 

  • Asaga T, Chiyasu S, Mastuda S, et al. (1987) Breast imaging: dual-energy projection radiography with digital radiography. Radiology 164: 869–870

    PubMed  CAS  Google Scholar 

  • Bird R, André M, Spivey B, Horton S, Neff B, Storm J (1994) Full breast digital imaging receptor utilizing advanced optics design. Radiology 193 (P): 476

    Google Scholar 

  • Brettle DS, Ward SC, Parkin GJ, Cowen AR, Sumsion HJ (1994) A clinical comparison between conventional and digital mammography utilizing computed radiography. Br J Radiol 67: 464–468

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty DP, Barnes GT (1989) An energy sensitive cas- sette for dual-energy mammography. Med Phys 16: 7–13

    Article  PubMed  CAS  Google Scholar 

  • Chan H, Vyborny C, MacMahon H, Metz C, Doi K, Sickles E (1986) Evaluation of digital unsharp-mask filtering for the detection of subtle mammographic microcalcifications. SPIE medicine XIV/Pacs IV 626

    Google Scholar 

  • Chan HP, Vyborny CJ, MacMahon H, Metz CE, Doi K, Sickles EA (1987a) Digital mammography. ROC studies of the effects of pixel size and unsharp-mask filtering on the detection of subtle microcalcifications. Invest Radiol 22: 581–589

    Article  CAS  Google Scholar 

  • Chan HP, Doi K, Galhotra S, Vyborny CJ, MacMahon H, Jokich PM (1987b) Image feature analysis and computer-aided diagnosis in digital radiography. I. Automated detection of microcalcifications in mammography. Med Phys 14: 538–548

    Article  CAS  Google Scholar 

  • Chan H, Doi K, Vyborny C, Lam K, Schmidt R (1988) Computer-aided detection of microcalcifications in mammograms: methodology and preliminary clinical study. Invest Radiol 23: 664–671

    PubMed  CAS  Google Scholar 

  • Chan H, Doi K, Vyborny C, et al. (1990) Improvement in radiologist’s detection of clustered microcalcifications on mammograms: the potential of computer-aided diagnosis. Invest Radiol 25: 1102–1110

    Article  PubMed  CAS  Google Scholar 

  • De Maeseneer M, Beeckman P, Osteaux M, et al. (1992) Detecting clustered microcalcifications in the female breast: secondary digitized images versus mammograms. J Belge Radiol 75: 173–178

    PubMed  Google Scholar 

  • Egan RL, Sweeney MB (1979) Mammographic parenchymal patterns and risk of breast cancer. Radiology 133: 65–76

    PubMed  CAS  Google Scholar 

  • Fam BW, Olson SL, Winter PF, Scholz FJ (1988) Algorithm for the detection of fine clustered calcifications on film mammograms. Radiology 169: 333–337

    PubMed  CAS  Google Scholar 

  • Feig SA (1994) Mammographic screening of women aged 40 to 49 years. Is it justified? Obstet Gynecol Clin North Am 21: 587–606

    PubMed  CAS  Google Scholar 

  • Fritz SL, Chang CH, Gupta NK, et al. (1986) A digital radiographic imaging system for mammography. Invest Radiol 21: 581–583

    Article  PubMed  CAS  Google Scholar 

  • Frost M, Staab E (1989) Displays: contrast and spatial requirements. Invest Radiol 24: 95–98

    Article  PubMed  CAS  Google Scholar 

  • Giger M, Doi K, Yin F, Schmidt R, Vyborny C (1989) Computerized classification of mass lesions in digital mammograms: lesion spiculation in analysis of malignancy. Radiology 173 (P): 394

    Google Scholar 

  • Herman S (1988) Feature-size dependent selective edge enhancement of X-ray images. SPIE medical imaging II (914): 654–659

    Google Scholar 

  • Holdsworth DW, Gerson RK, Fenster A (1990) A time-delay integration charge-coupled device camera for slot-scanned digital radiography. Med Phys 17: 876–886

    Article  PubMed  CAS  Google Scholar 

  • Ishida M, Frank P, Doi K, Lehr J (1983) High quality digital radiographic images: improved detection of low contrast objects and preliminary clinical studies. Radiographics 3: 325–338

    Google Scholar 

  • Jarlman O, Samuelsson L, Braw M (1991) Digital luminescence mammography. Early clinical experience. Acta Radiol 32: 110–113

    Article  PubMed  CAS  Google Scholar 

  • Johns PC, Drost DJ, Yaffe MJ, Fenster A (1985) Dual-energy mammography: initial experimental results. Med Phys 12: 297–304

    Article  PubMed  CAS  Google Scholar 

  • Karellas A, Harris LJ, Liu H, Davis MA, D’Orsi CJ (1992) Charge-coupled device detector: performance considerations and potential for small-field mammographic imaging applications. Med Phys 19: 1015–1023

    Article  PubMed  CAS  Google Scholar 

  • Karssemeijer N, Frieling JT, Hendriks JH (1993) Spatial resolution in digital mammography. Invest Radiol 28: 413–419

    Article  PubMed  CAS  Google Scholar 

  • Kegelmeyer W Jr, Pruneda JM, Bourland PD, Hillis A, Riggs MW, Nipper ML (1994) Computer-aided mammographic screening for spiculated lesions. Radiology 191: 331–337

    PubMed  Google Scholar 

  • Kimme-Smith C, Bassett L, Gold RH, Roe D, Orr R (1987) Mammographic dual-screen-dual-emulsion-film combination: visibility of simulated microcalcifications and effect on image contrast. Radiology 165: 313–318

    PubMed  CAS  Google Scholar 

  • Kimme-Smith C, Bassett LW, Gold RH, Gormley L (1989) Digital mammography. A comparison of two digitization methods. Invest Radiol 24: 869–875

    Article  PubMed  CAS  Google Scholar 

  • Krupinski E (1994) Observer performance using lens-coupled vs fiberoptic-coupled digital X-ray cameras for stereotaxic breast imaging. Radiology 193 (P): 476

    Google Scholar 

  • Lambruschi G, Tagliagambe A, Palla L, et al. (1993) A comparison between traditional mammography and digital with storage phosphors. Radiol Med 85: 59–64

    PubMed  CAS  Google Scholar 

  • Millis R, Davis R, Stacey A (1976) The detection and significance of calcifications in the breast. A radiological and pathological study. Br J Radiol 49: 12–26

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz M (1982) Mammographic parenchymal patterns: more controversy. JAMA 247: 210

    Article  PubMed  CAS  Google Scholar 

  • Nab HW, Karssemeijer N, Van Erning LJ, Hendriks JH (1992) Comparison of digital and conventional mammography: a ROC study of 270 mammograms. Med Inf 17: 125–131

    Article  CAS  Google Scholar 

  • Nishikawa RM, Mawdsley GE, Fenster A, Yaffe MJ (1987) Scanned-projection digital mammography. Med Phys 14: 717–727

    Article  PubMed  CAS  Google Scholar 

  • Oestmann J, Kopans D, Schaefer C, et al. (1988a) Visibility of individual microcalcifications in the breast-what percentage can we expect to see? Radiology 169 (P): 352

    Google Scholar 

  • Oestmann J, Kopans D, Linetsky L, et al. (1988b) Comparison of two screen film combinations for mammographic studies. Radiology 168: 657–659

    CAS  Google Scholar 

  • Oestmann J, Kopans D, Hall DA, McCarthy KA, Rubens JR, Greene R (1988c) A comparison of digitized storage phosphors and conventional mammography in the detection of malignant microcalcifications. Invest Radiol 23: 725–728

    Article  CAS  Google Scholar 

  • Oestmann J, Kopans D, Hall D, McCarthy K, Rubens J, Greene R (1988d) Digitale Mammographie mit Speicher-Phosphoren: Einfluß der Bildnachverarbeitung auf die Erkennung von malignen Mikroverkalkungen. Zentralbi Rad 136: 615

    Google Scholar 

  • Oestmann J, Kopans D, Greene R (1988e) Digitale mammographie. In: Riemann H, Kollath J, Rienhoff O (eds) 3. Frankfurter Gespräche über Digitale Radiographie. Schnetztor, Konstanz, pp 133–137

    Google Scholar 

  • Oestmann J, Reichelt S, Rosenthal H, et al. (1989) Digital mammography with storage phosphors: substantial reductions in photon flux or voltage impair detectability of microcalcifications. Radiology 173 (P): 394

    Google Scholar 

  • Oestmann J, Prokop M, Schaefer C, Galanski M (1991) Hardware and software artefacts in storage phosphor radiography. Radiographics 11: 795–805

    PubMed  CAS  Google Scholar 

  • Page DL, Windfield AC (1986) The dense mammogram. AJR 147: 487–489

    PubMed  CAS  Google Scholar 

  • Piccaro M (1994) Digital mammography: a step up in image quality through high resolution and scatter rejection. Radiology 193 (P): 474

    Google Scholar 

  • Pizer S, Johnston E, Zimmermann J, Chan F (1982) Contrast perception with video displays. SPIE Medical Applications 318: 223–230

    Google Scholar 

  • Priebe CE, Solka JL, Lorey RA, et al. (1994) The application of fractal analysis to mammographic tissue classification. Cancer Lett 77: 183–189

    Article  PubMed  CAS  Google Scholar 

  • Prokop M, Schaefer C, Oestmann J, Galanski M (1990) Isodose dual-energy radiography with storage phosphors: fast non-linear subtraction and noise suppression with standard equipment. Radiology 177 (P): 328

    Google Scholar 

  • Sickles E (1982) Mammographic detectability of breast calcifications. AJR 139: 913–918

    PubMed  CAS  Google Scholar 

  • Smathers RL, Bush E, Drace J, et al. (1986) Mammographic microcalcifications: detection with xerography, screen-film, and digitized film display. Radiology 159: 673–677

    PubMed  CAS  Google Scholar 

  • Sonoda M, Takano M, Miyahara J, Kato H (1983) Computed radiography utilizing scanning laser stimulated luminescence. Radiology 148: 833–838

    PubMed  CAS  Google Scholar 

  • St. John E, Craig D (1957) Logetronography. AJR 78:123–133

    Google Scholar 

  • Vogel VG (1994) Screening younger women at risk for breast cancer. Monogr Natl Cancer Inst 16:55–60

    PubMed  Google Scholar 

  • Vyborny C (1994) Can computers help radiologists read mammograms? Radiology 191: 315–317

    PubMed  CAS  Google Scholar 

  • Yaffe MJ (1993) Direct digital mammography using a scanned- slot CCD imaging system. Med Prog Technol 19: 13–21

    PubMed  CAS  Google Scholar 

  • Yin FF, Giger ML, Vyborny CJ, Doi K, Schmidt RA (1993) Comparison of bilateral-subtraction and single-image processing techniques in the computerized detection of mammographic masses. Invest Radiol 28: 473–481

    Article  PubMed  CAS  Google Scholar 

  • Yin FF, Giger ML, Doi K, Vyborny CJ, Schmidt RA (1994) Computerized detection of masses in digital mammograms: automated alignment of breast images and its effect on bilateral-subtraction technique. Med Phys 21: 445–452

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Oestmann, JW. (2000). Digital Mammography. In: Friedrich, M., Sickles, E.A. (eds) Radiological Diagnosis of Breast Diseases. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60919-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60919-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66339-3

  • Online ISBN: 978-3-642-60919-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics