Skip to main content

Peptide-Secreting Dendrites: New Controls for Neuroendocrine Neurons

  • Conference paper
Neuroendocrinology
  • 139 Accesses

Abstract

Peptidergic neurons are well known to synthesize and package peptides in their perikarya, and transport the peptide-containing dense-cored vesicles along their axons for release at the axon terminals. Immunocytochemistry and electron microscopy reveal that the dendrites of peptidergic neurons also contain substantial amounts of peptide-containing dense-cored vesicles in addition to receiving the synaptic boutons afferent to the neurons. The release of peptides from dendrites and the ability of dendrites to synthesize proteins has been investigated, using the magnocellular neurosecretory system of the hypothalamus, which has already proved itself a robust model for investigation of peptidergic neurons. Wild-type and homozygous Brattleboro rats which have hyperactive magnocellular neurons were studied. The dendrites contain all the cellular machinery needed to synthesize proteins, but there is little evidence of classical Golgi-cisterns to package them. It seems unlikely that the vasopressin or oxytocin packaged in dense-cored vesicles are synthesized in the dendrites, but mRNAs encoding receptor and microtubule proteins are present in the dendrites and could be translated there to provide finer control of afferent inputs. Neurotransmitters which stimulate magnocellular neurons elicit the exocytosis of vasopressin and oxytocin from both the dendrites and cell bodies, though that from dendrites is quantitatively the greater. Oestradiol and oxytocin are also capable of stimulating dendritic peptide release. There is increasing evidence that the release of dendritic’ peptide has important local effects on the magnocellular neurons themselves and on surrounding glia. Dendritic peptide thus provides local autocrine and paracrine controls on the activity of neurosecretory neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adan RA, Van Leeuwen FW, Sonnemans MA, Brouns M, Hoffman G, Verbalis JG, Burbach JP (1995a) Rat oxytocin receptor in brain, pituitary, mammary gland, and uterus: partial sequence and immunocytochemical localization. Endocrinology 136: 4022–4028

    Article  PubMed  CAS  Google Scholar 

  • Adan RA, Van Leeuwen FW, Sonnemans MA, Hoffman G, Verbalis JG, Burbach JP (1995b) The rat oxytocin receptor. cDNA cloning and immunocytochemical localization in brain, pituitary, mammary gland and uterus. Adv Exp Med Biol 395: 345–346

    CAS  Google Scholar 

  • Amico JA, Finn FM, Robinson AG (1986) Ampholyte displacement and high pressure liquid chromatographic separation of estrogen-responsive neurophysin from human plasma. J Clin Endocrinol Metab 63: 835–840

    Article  CAS  Google Scholar 

  • Baulieu EE (1992) Neurosteroids: an overview. Adv Biochem Psychopharmac 47: 1–16

    CAS  Google Scholar 

  • Castel M, Morris JF (1988) The neurophysin-containing innervation of the forebrain of the mouse. Neuroscience 24: 937–966

    Article  PubMed  CAS  Google Scholar 

  • Castel M, Morris JF, Belenky M (1996) Non-synaptic and dendritic exocytosis from dense-cored vesicles in the suprachiasmatic nucleus. NeuroReport 7: 543–547

    Article  CAS  Google Scholar 

  • DiScala Guenod D, Strosser MT, Richard P (1987) Electrical stimulations of perifused magnocellular nuclei in vitro elicit Ca2+-dependent, tetrodotoxin-insensitive release of oxytocin and vasopressin. Neurosci Lett 76: 209–214

    Article  Google Scholar 

  • Dayanithi G, Widmer H, Richard Ph (1996) Vasopressin-induced intracellular Ca2+ increase in isolated rat supraoptic cells. J Physiol 490: 713–727

    CAS  Google Scholar 

  • Foster RG, Plowman G, Goldsmith AR, Follett BK, Parry DM (1988) The LH-RH system of the male European starling: photoperiod induces changes to a possible multifunctional peptide system. Basic Appl Histochem 32: 95–102

    CAS  Google Scholar 

  • Glazer EJ, Basbaum AI (1983) Opioid neurons and pain modulation: an ultrastructural analysis of enkephalin in cat superficial dorsal horn. Neuroscience 10: 357–76

    Article  PubMed  CAS  Google Scholar 

  • Herbison AE (1994) Immunocytochemical evidence for oestrogen receptors within GAB A neurons located in the perinuclear zone of the supraoptic nucleus and GABAA β2/β3 subunits on supraoptic oxytocin neurons. J Neuroendocrinol 6: 5–11

    Article  PubMed  CAS  Google Scholar 

  • Ju G, Liu S, Tao J (1986) Projections from the hypothalamus and its adjacent areas to the posterior pituitary in the rat. Neuroscience 19: 803–828

    Article  PubMed  CAS  Google Scholar 

  • Ju G, Ma D, Duan X-Q (1992) Third ventricular subependymal oxytocin-like immunoreactive neuronal plexus in the rat. Brain Res Bull 28: 887–896

    Article  CAS  Google Scholar 

  • Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J-A (1996) Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93: 5925–5930

    Article  CAS  Google Scholar 

  • Kuiper GGJM, Carlsson B, Grandien J, Enmark B, Haggblad J, Nilsson S, Gustafsson J-A (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology 138: 863–870

    Article  PubMed  CAS  Google Scholar 

  • Landgraf R (1992) Central release of vasopressin: stimuli, dynamics and consequences. Prog Brain Res 91: 29–39

    Article  PubMed  CAS  Google Scholar 

  • Landgraf R (1995) Intracerebrally released vasopressin and oxytocin: measurement, mechanisms and behavioural consequences. J Neuroendocrinol 7: 243–253

    Article  PubMed  CAS  Google Scholar 

  • Leng G, Mason WT (1982) Influence of vasopressin upon firing patterns of supraoptic neurons:a comparison of normal and Brattleboro rats. Ann NY Acad Sci 394: 153–158

    Article  CAS  Google Scholar 

  • Lu J, Ho RH (1992) Evidence for dorsal root projection to somatostatin-immunoreactive structures in laminae I-II of the spinal dorsal horn. Brain Res Bull 28: 17–26

    Article  CAS  Google Scholar 

  • Ma D, Morris JF (1996) Protein synthetic machinery in magnocellular dendrites of Brattleboro and wild-type rats. 16th Blankenese Conference, Abstract 16.

    Google Scholar 

  • Ma D, Morris JF (1997a) Local protein synthesis in magnocellular dendrites: basic elements and their response to hyperosmotic stimuli. 1997 World Congress of Neurohypophysial Hormones, Montreal, Canada, August 1997

    Google Scholar 

  • Ma D, Morris JF (1997b) Nitric oxide synthase gene expression is increased in magnocellular hypothalamic neurons of homozygous Brattleboro rats. J Endocrinol 152 (Suppl): OC40

    Article  Google Scholar 

  • McEwen BS, Coirini H, Schumacher M (1990) Steroid effects on neuronal activity: when is the genome involved? In: Chadwick D, Widdows K (eds) Steroids and neuronal activity. Ciba Found Symp 153: 3–12

    Google Scholar 

  • Moos F, Freund-Mercier MJ, Guerne Y, Guerne JM, Stoeckel ME, Richard Ph (1984) Release of oxytocin and vasopressin by magnocellular nuclei in vitro: specific facilitatory effect of oxytocin on its own release. J Endocrinol 102: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Moos F, Freund-Mercier Y, Guerne Y, Vincent JD, Richard P (1989) Release of oxytocin within the supraoptic nucleus during the milk ejection reflex. Exp Brain Res 76: 593–602

    Article  PubMed  CAS  Google Scholar 

  • Morris JF (1987) The Brattleboro magnocellular neurosecretory system: a model for the study of peptidergic neurons. Ann NY Acad Sci 394: 54–71

    Article  Google Scholar 

  • Morris JF, Pow DV, Sokol HW, Ward AR (1993) Dendritic release of peptides from magnocellular neurons in normal rats, Brattleboro rats and mice with hereditary nephrogenic diabetes insipidus. In: Gross P, Richter D, Robertson GL (eds) Vasopressin. John Libbey Eurotext, Paris, pp 171–182

    Google Scholar 

  • Moss RL, Dyball REJ, Cross BA (1972) Excitation of antidromically identified neurosecretory cells of the paraventricular nucleus by oxytocin applied iontophoretically. Exp Neurol 34: 95–102

    Article  PubMed  CAS  Google Scholar 

  • Mosselman S, Polman J, Dijkema (1996) ERβ: identification and characterization of a novel human estrogen receptor. FEBS Lett 392: 49–53

    Article  PubMed  CAS  Google Scholar 

  • Neumann I, Koehler E, Landgraf R, Summy-Long JY (1994) An oxytocin receptor antagonist infused into the supraoptic nucleus attenuates intranuclear and peripheral release of oxytocin during suckling in conscious rats. Endocrinology 134: 141–148

    Article  CAS  Google Scholar 

  • Perlow MJ, Reppert SM, Artman HA, Fisher DA, Self SM, Robinson AG (1982) Oxytocin, vasopressin and estrogen-stimulated neurophysin: daily patterns of concentration in cerebrospinal fluid. Science 216: 1416–1418

    Article  PubMed  CAS  Google Scholar 

  • Pfaff DW (1989) Patterns of steroid hormone effects on electrical and molecular events in hypothalamic neurons. Mol Neurobiol 3: 135–154

    Article  PubMed  CAS  Google Scholar 

  • Pow DV, Morris JF (1989) Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience 32: 435–439

    Google Scholar 

  • Pow DV, Morris JF, Toescu EC (1990) Dendrosomes: a new preparation of isolated neurosecretory dendrites. J Neuroendocrinol 2: 103–106

    Article  CAS  Google Scholar 

  • Pow DV, Morris JF, Rodgers S (1991) Peptide accretions in the endoplasmic reticulum of magnocellular neurosecretory neurons in normal and experimentally manipulated rats. J Anat 178: 155–174

    PubMed  CAS  Google Scholar 

  • Randle JRC, Bourque CW, Renaud LP (1986) Serial reconstruction of Lucifer yellow-labelled supraoptic nucleus neurons in perfused rat hypothalamic explants. Neuroscience 17: 435–467

    Article  Google Scholar 

  • Robinson AG, Ferin M, Zimmerman EA (1976) Plasma neurophysin levels in monkeys: emphasis on the hypothalamic response to estrogen and ovarian events. Endocrinology 98: 468–475

    Article  PubMed  CAS  Google Scholar 

  • Scharrer E, Scharrer B (1940) Secretory cells within the hypothalamus. Res Publ Assoc Res Nerv Ment Dis 20: 170–194

    Google Scholar 

  • Scharrer E, Scharrer B (1945) Neurosecretion. Phys Revs 25: 171–181

    CAS  Google Scholar 

  • Scharrer E (1951) Das Hypophysen-Zwischenhirnsystem von Scyllium stellare. Z Zellforsch 37: 196–204

    Article  Google Scholar 

  • Schwartz WJ, Gross RA, Morton MT (1987) The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc Natl Acad Sci USA 84: 1694–1698

    Article  PubMed  CAS  Google Scholar 

  • Shibata S, Moore RY (1993) Tetrodotoxin does not affect circadian rhythms in neuronal activity and metabolism in rodent suprachiasmatic nucleus in vitro. Brain Res 606: 259–266

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew MV, Weindl A, Schinko I, Wetzstein R (1979) The distribution of vasopressin-, oxytocin- and neurophysin-producing neurons in the guinea pig brain. Cell Tissue Res 196: 367–384

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew MV, Glassmann W (1981) Golgi-like immunoperoxidase staining of hypothalamic magnocellular neurons that contain vasopressin, oxytocin or neurophysin in the rat. Neuroscience 6: 619–643

    Article  PubMed  CAS  Google Scholar 

  • Steward O (1997) Ultrastructural basis for gene expression at the synapse: synapse-associated polyribosome complexes. Neuron 18: 9–12

    Article  PubMed  CAS  Google Scholar 

  • Theodosis DT, Montagnese C, Rodriguez F, Vincent JD, Poulain DA (1986) Oxytocin induces morphological plasticity in the adult hypothalamo-neurohypophysial system. Nature 322: 738–740

    Article  PubMed  CAS  Google Scholar 

  • Theodosis DT, Poulain DA (1993) Activity-dependent neuronal-glial and synaptic plasticity in the adult mammalian hypothalamus. Neuroscience 57: 501–535

    Article  PubMed  CAS  Google Scholar 

  • Tribollet E, Barberis C, Dubois-Dauphin M, Dreifuss JJ (1992) Localization and characterization of binding sites for vasopressin and oxytocin in the brain of the guinea pig. Brain Res 589: 15–23

    Article  PubMed  CAS  Google Scholar 

  • Vandesande F, Dierickx K (1975) Identification of the vasopressin-producing and the oxytocin-producing neurons in the hypothalamic magnocellular neurosecretory system of rat. Cell Tissue Res 164: 153–162

    Article  PubMed  CAS  Google Scholar 

  • Vigh-Teichmann, Vigh B, Korf HW, Oksche A (1983) CSF-contacting and other somatostatin-immunoreactive neurons in the brains of Anguilla anguilla, Phoxinus phoxinus, and Salmo gairdneri (Teleostei) Cell Tissue Res 233: 319–34

    Google Scholar 

  • Wang H, Morris JF (1996a) Constitutive nitric oxide synthase in hypothalami of normal and hereditary diabetes insipidus rats and mice: role of nitric oxide in osmotic regulation and its mechanism. Endocrinology 137: 1745–1751

    Article  CAS  Google Scholar 

  • Wang H, Morris (1996b) Presence of neuronal nitric oxide synthase in the suprachiasmatic nuclei of mouse and rat. Neuroscience 74: 1059–1068

    PubMed  CAS  Google Scholar 

  • Wang H, Morris JF (1996c) Oestradiol acutely stimulates exocytosis of oxytocin and vasopressin from dendrites and somata of hypothalamic magnocellular neurons. Neuroscience 68: 1179–1188

    Article  Google Scholar 

  • Ward AR (1994) The role of receptors in controlling the release of peptides from the dendrites of magnocellular neurons. PhD Thesis, University of Oxford

    Google Scholar 

  • Yamashita H, Okuya S, Inenaga K, Kasai M, Uesugi S, Kannan H, Kaneko T (1987) Oxytocin predominantly excites putative oxytocin neurons in the rat supraoptic nucleus in vitro. Brain Res 416: 364–368

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morris, J.F., Ma, D., Pow, D.V., Wang, H., Ward, A. (1997). Peptide-Secreting Dendrites: New Controls for Neuroendocrine Neurons. In: Korf, HW., Usadel, KH. (eds) Neuroendocrinology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60915-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60915-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64605-8

  • Online ISBN: 978-3-642-60915-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics