Skip to main content

Melatonin Synthesis and Calcium Responses in the Pineal Gland of the Trout

  • Conference paper
Book cover Neuroendocrinology
  • 139 Accesses

Abstract

The present in vitro study correlates melatonin production of explanted trout pineal organs with intracellular calcium concentrations of isolated and immunocytochemically identified pinealocytes. Melatonin production of pineal organs maintained in flow-through organ culture is closely related to the incident light, showing high levels in the scotopic and mesopic range of illumination and low levels in the photopic range. Diminishing extracellular calcium (Ca2+) and enhancing magnesium (Mg2+) as well as application of Co2+ (3 mM) reduces melatonin release in the light- and dark-adapted state and causes a reversible breakdown of spontaneous oscillations in the intracellular concentration of free calcium ions [Ca2+]i that are observed in approximately 20% of the isolated S-antigen-immunoreactive pinealocytes. Intracellular calcium oscillations are also reversibly blocked by application of 10 μM nifedipine. Depolarization of pinealocytes by treatment with 60 mM KCl elevates [Ca2+]i in 90% of the oscillating and 50% of the non-oscillating cells. The effect of KCl is blocked by 50 μM nifedipine and 3 mM CoCl2. Furthermore, application of CoCl2 reduces the basal [Ca2+]i in non-oscillating pinealocytes. These results suggest that voltagegated L-type calcium channels play a major role in the regulation of [Ca2+]i in trout pinealocytes. It appears that Co2+ and low calcium/high Mg2+ buffer reduces melatonin release through an action on the intracellular calcium concentration of trout pinealocytes. All these data show that the trout pineal organ synthesizes and releases melatonin in relation to the irradiance of the incident light and depends on the presence of extracellular calcium which enters the cell via voltage-gated calcium channels. Treatment of cultured pineal organs with norepinephrine (1 μM) or the β-adrenergic agonist isoproterenol has no significant effect on the light-dependent melatonin release. Furthermore, application of norepinephrine in varying concentrations (100 pM - 50 μM) that were previously shown to induce calcium release from intracellular calcium stores in rat pinealocytes has no effect on [Ca2+]i of oscillating or non-oscillating trout pinealocytes. These data suggest that in the trout pineal organ a norepinephrine sensitive pinealocyte of the mammalian type is not involved in the transduction of light signals into a melatonin response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arendt J (1995) Melatonin and the mammalian pineal gland. Chapman & Hall, London, pp 1–331

    Google Scholar 

  • Begay V, Bois P, Collin JP, Lenfant J, Falcon J (1994) Calcium and melatonin production in dissociated trout pineal photoreceptor cells in culture. Cell Calcium 16: 37–46

    Article  PubMed  CAS  Google Scholar 

  • Collin JP (1971) Differentiation and regression of the cells of the sensory line in the epiphysis cerebri: In: Wolstenholme GEW, Knight J (eds) The pineal gland. Churchill-Livingstone, Edinburgh, pp 79–125

    Google Scholar 

  • Collin JP, Meissl H, Voisin P, Brisson P, Falcon J (1986) Rhythmic signals of pineal transducers: physiological, biochemical, and cytochemical evidence. In: Reiter RJ, Karasek M (eds) Advances in Pineal Research. John Libbey, London, pp 41–50

    Google Scholar 

  • Collin JP, Oksche A (1981) Structural and functional relationships in the mammalian pineal gland. In: Reiter RJ (ed) The pineal gland. Vol I, Anatomy and biochemistry. CRC, Boca Raton, pp 27–67

    Google Scholar 

  • Dodt E (1973) The parietal eye (pineal and parietal organs) of lower vertebrates. In: Jung R (ed) Handbook of sensory physiology, vol VII/3B. Springer, Berlin, Heidelberg, New York, pp 113–140

    Google Scholar 

  • D’Souza T, Dryer SE (1994) Intracellular free Ca2+ in dissociated cells of the chick pineal gland: regulation by membrane depolarization, second messengers and neuromodulators, and evidence for release of intracellular Ca2+ stores. Brain Res 656: 85–94

    Article  PubMed  Google Scholar 

  • Ekstrom P, Reschke M, Steinbusch H, VanVeen T (1986) Distribution of noradrenaline in the brain of the teleost Gasterosteus aculeatus L.: an immunohistochemical analysis. J Comp Neurol 254: 297–313

    Article  PubMed  CAS  Google Scholar 

  • Ekstrom P, Meissl H (1990) Electron microscopic analysis of S-antigen- and serotonin-immunoreactive neural and sensory elements in the photosensory pineal organ of the salmon. J Comp Neurol 292: 73–82

    Article  PubMed  CAS  Google Scholar 

  • Falcon J, Juillard MT, Collin JP (1980) L’organe pineal du Brochet (Esox lucius L.) IV. Serotonine endogene et activite monoamine oxydasique: etude histochimique, ultracytochimique et pharmacologique. Reprod Nutr Dev 20: 139–154

    Article  PubMed  CAS  Google Scholar 

  • Falcon J, Thibault C, Martin C, Brun-Marmillon J, Claustrat B, Collin J P (1991) Regulation of melatonin production by catecholamines and adenosine in a photoreceptive pineal organ. An in vitro study in the pike and in the trout. J Pineal Res 11: 123–134

    Article  PubMed  CAS  Google Scholar 

  • Gern WA, Greenhouse SS (1988) Examination of in vitro melatonin secretion from superfused trout (Salmo gairdneri) pineal organ maintained under diel illumination or continuous darkness. Gen Comp Endocrinol 71: 163–174

    Article  PubMed  CAS  Google Scholar 

  • Gern WA, Greenhouse SS, Nervina JM, Gasser PJ (1992) The rainbow trout pineal organ: an endocrine photometer. In: Ali MA (ed) Rhythms in fishes. Plenum, New York, pp 199–218

    Google Scholar 

  • Klein DC (1985) Photoneural regulation of the mammalian pineal gland. In: Evered D, Clark S (eds) Photoperiodism, melatonin and the pineal gland. Pitman, London, pp 38–56

    Google Scholar 

  • Korf H-W (1994) The pineal organ as a component of the biological clock. Phylogenetic and ontogenetic considerations. Ann NY Acad Sci 719: 13–42

    Article  PubMed  CAS  Google Scholar 

  • Kroeber S, Schomerus C, Korf H-W (1997) Calcium oscillations in a subpopulation of S-antigen-immunoreactive pinealocytes of the rainbow trout (Oncorhynchus mykiss). Brain Res 744: 68–76

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Falcon J, Collin JP (1991) Catecholamines regulate cAMP levels in the photosensitive trout pineal organ. Adv Pineal Res 5: 137–139

    CAS  Google Scholar 

  • Martin C, Meissl H (1992) Effects of dopaminergic and noradrenergic mechanisms on the neuronal activity of the isolated pineal organ of the trout, Oncorhynchus mykiss. J Neural Transm 88: 37–51

    Article  CAS  Google Scholar 

  • Max M, Menaker M (1992) Regulation of melatonin production by light, darkness, and temperature in the trout pineal. J Comp Physiol A 170: 479–489

    Google Scholar 

  • Meissl H (1986) Photoneurophysiology of pinealocytes. In: O’Brien PJ, Klein DC (eds) Pineal and retinal relationships. Academic Press, Orlando, pp 33–46

    Google Scholar 

  • Meissl H, Dodt E (1981) Comparative physiology of pineal photoreceptor organs. In: Oksche A, Pevet P (eds) The pineal organ: photobiology - biochronometry - endocrinology. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 61–80

    Google Scholar 

  • Meissl H, Ekstrom P (1988) Dark and light adaptation of pineal photoreceptors. Vision Res 28: 49–56

    PubMed  CAS  Google Scholar 

  • Meissl H, George SR (1984) Electrophysiological studies on neuronal transmission in the frog’s photosensory pineal organ. The effect of amino acids and biogenic amines. Vision Res 24: 1727–1734

    Article  PubMed  CAS  Google Scholar 

  • Meissl H, Kroeber S, Yanez J, Korf H-W (1996) Regulation of melatonin production and intracellular calcium concentrations in the trout pineal organ. Cell Tissue Res 186: 315–323

    Article  Google Scholar 

  • Meissl H, Yanez J (1994) Pineal photosensitivity. A comparison with retinal photoreception. Acta Neurobiol Exp 54 (Suppl): 19–29

    Google Scholar 

  • Oksche A (1971) Sensory and glandular elements of the pineal organ. In: Wolstonholme GEW, Knight J (eds) The pineal gland. Churchill-Livingstone, Edinburgh, pp 127–146

    Google Scholar 

  • Owman C, Ruedeberg C (1970) Light, fluorescence, and electron microscopic studies on the pineal organ of the pike, Esox lucius L., with special regard to 5-hydroxytryptamine. Z Zellforsch 107: 522–550

    Article  PubMed  CAS  Google Scholar 

  • Saez JC, Moreno AP, Spray DC (1994) Norepinephrine induces Ca2+ release from intracellular stores in the rat pinealocytes. J Pineal Res 16: 57–64

    Article  PubMed  CAS  Google Scholar 

  • Schaad NC, Parfitt A, Russel JT, Schaffner AE, Korf HW, Klein DC (1993) Single-cell [Ca2+]; analysis and biochemical characterization of pinealocytes immobilized with novel attachment peptide preparation. Brain Res 614: 251–256

    Article  PubMed  CAS  Google Scholar 

  • Schomerus C, Ruth P, and Korf HW (1994) Photoreceptor-specific proteins in the mammalian pineal organ: immunocytochemical data and functional considerations. Acta Neurobiol Exp 54 (Suppl.): 9–17

    Google Scholar 

  • Schomerus C, Laedtke E, Korf HW (1995) Calcium responses of isolated, immunocyto-chemically identified rat pinealocytes to noradrenergic, cholinergic and vasopressinergic stimulations. Neurochem Int 27: 163–175

    Article  PubMed  CAS  Google Scholar 

  • Sugden D, Klein DC (1988) Activators of protein kinase C act as a postreceptor site to amplify cyclic AMP production in rat pinealocytes. J Neurochem 50: 149–155

    Article  PubMed  CAS  Google Scholar 

  • Tabata M, Meissl H (1993) Thermal responses of achromatic ganglion cells in the photosensory pineal organ of rainbow trout Oncorhynchus mykiss. Comp Biochem Physiol 105A: 453–457

    Article  Google Scholar 

  • Thibault C, Falcon J, Greenhouse SS, Lowery A, Gern WA, Collin JP (1993) Regulation of melatonin production by pineal photoreceptor cells: role of cyclic nucleotides in the trout (Oncorhynchus mykiss). J Neurochem 61: 332–339

    Article  PubMed  CAS  Google Scholar 

  • Wicht H, Korf H-W, Schaad NC (1993) Morphological and immunocytochemical heterogeneity of cultured pinealocytes from one-week- and two-month-old rats: planimetric and densitometric investigations. J Pineal Res 14: 128–137

    Article  PubMed  CAS  Google Scholar 

  • Yanez J, Meissl H (1996) Secretion of the methoxyindoles melatonin, 5-methoxytryptophol, 5-methoxyindoleacetic acid, and 5-methoxytryptamine from trout pineal organs in superfusion culture: effects of light intensity. Gen Comp Endocrinol 101: 165–172

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kroeber, S., Korf, HW., Meissl, H. (1997). Melatonin Synthesis and Calcium Responses in the Pineal Gland of the Trout. In: Korf, HW., Usadel, KH. (eds) Neuroendocrinology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60915-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60915-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64605-8

  • Online ISBN: 978-3-642-60915-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics