Skip to main content

Excitable Gap, Antiarrhythmic Actions, Electrical Remodeling: The Role Of MAP Recording in Atrial Fibrillation And Other Atrial Tachyarrhythmias

  • Conference paper
  • 358 Accesses

Abstract

Atrial fibrillation (AF) is a common arrhythmia with significant clinical impact. Despite newer advances in arrhythmia treatment such as catheter ablation and implantable defibrillators, AF remains a domain for pharmacologic therapy. Although many clinical variables predisposing to AF have been determined (e.g., enlarged atrial size, valvular heart disease, hyperthyroidism), the electrophysiologic mechanisms leading to AF, its termination and its recurrence, are still insufficiently understood. This has made it difficult to apply pharmacologic therapy in a scientifically founded fashion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Franz MR (1994) Bridging the gap between basic and clinical electrophysiology:what can be learned from monophasic action potential recordings? J Cardiovasc Electrophysiol 5:699–710

    Article  PubMed  CAS  Google Scholar 

  2. Franz MR (1991) Method and theory of monophasic action potential recording. Prog Cardiovasc Dis 33:347–368

    Article  PubMed  CAS  Google Scholar 

  3. Franz MR, Chin MC, Sharkey HR, Griffin JC, Scheinman MM (1990) A new single catheter technique for simultaneous measurement of action potential duration and refractory period in vivo. J Am Coll Cardiol 16:878–886

    Article  PubMed  CAS  Google Scholar 

  4. Franz MR, Burkhoff D, Spurgeon H, Weisfeldt ML, Lakatta EG (1986) In vitro validation of a new cardiac catheter technique for recording monophasic action potentials. Eur Heart J 7:34–41

    PubMed  CAS  Google Scholar 

  5. Koller BS, Karasik PE, Soloman AJ, Franz MR (1995) Prolongation of conduction time during premature stimulation in the human atrium is primarily caused by local stimulus response latency. Eur Heart J 16:1920–1924

    PubMed  CAS  Google Scholar 

  6. Kirchhof C, Chorro F, Scheffer GJ, Brugada J, Konings K, Zetelaki Z, Allessie M (1993) Regional entrainment of atrial fibrillation studied by high-resolution mapping in open- chest dogs. Circulation 88:736–749

    PubMed  CAS  Google Scholar 

  7. Daoud EG, Pariseau B, Niebauer M, Bogun F, Goyal R, Harvey M, Man KC, Strickberger SA, Morady F (1996) Response of type I atrial fibrillation to atrial pacing in humans. Circulation 94:1036–1040

    PubMed  CAS  Google Scholar 

  8. Franz MR, Kirchhof PF, Fabritz CL, Zabel M (1995) Computer analysis of monophasic action potentials:manual validation and clinically pertinent applications. Pacing Clin Electrophysiol 18:1666–1678

    Article  PubMed  CAS  Google Scholar 

  9. Lammers WJ, Schalij MJ, Kirchhof CJ, Allessie MA (1990) Quantification of spatial in- homogeneity in conduction and initiation of reentrant atrial arrhythmias. Am J Physiol 259:H1254–H1263

    PubMed  CAS  Google Scholar 

  10. Brorson L, Olsson SB (1977) Right atrial monophasic action potential in patients with paroxysmal supraventricular tachyarrhythmias. Acta Med Scand 201:105–110

    Article  PubMed  CAS  Google Scholar 

  11. Olsson SB, Cotoi S, Varnauskas E (1971) Monophasic action potential and sinus rhythm stability after conversion of atrial fibrillation. Acta Med Scand 190:381–387

    Article  PubMed  CAS  Google Scholar 

  12. Franz MR, Costard A (1988) Frequency-dependent effects of quinidine on the relationship between action potential duration and refractoriness in the canine heart in situ. Circulation 77:1177–1184

    Article  PubMed  CAS  Google Scholar 

  13. Lee RJ, Liem LB, Cohen TJ, Franz MR (1992) Relation between repolarization and refractoriness in the human ventricle:cycle length dependence and effect of procainamide. J Am Coll Cardiol 19:614–618

    Article  PubMed  CAS  Google Scholar 

  14. Campbell TJ (1983) Kinetics of onset of rate-dependent effects of class I antiarrhythmic drugs are important in determining their effects on refractoriness in guinea-pig ventricle, and provide a theoretical basis for their subclassification. Cardiovasc Res 17:344–352

    Article  PubMed  CAS  Google Scholar 

  15. Costard-Jackie A, Franz MR (1989) Frequency-dependent antiarrhythmic drug effects on postrepolarization refractoriness and ventricular conduction time in canine ventricular myocardium in vivo. J Pharmacol Exp Ther 251:39–46

    Google Scholar 

  16. Suttorp MJ, Kingma JH, Koomen EM, van’t Hof A, Tijssen JG, Lie KI (1993) Recurrence of paroxysmal atrial fibrillation or flutter after successful cardioversion in patients with normal left ventricular function. Am J Cardiol 71:710–713

    Article  PubMed  CAS  Google Scholar 

  17. Kopecky SL, Gersh BJ, McGoon MD, Whisnant JP, Holmes DR, Jr, Ilstrup DM, Frye RL (1987) The natural history of lone atrial fibrillation. A population-based study over three decades. N Engl J Med 317:669–674

    Article  PubMed  CAS  Google Scholar 

  18. Gosselink AT, Crijns HJ, Van Gelder IC, Hillige H, Wiesfeld AC, Lie KI (1992) Low-dose amiodarone for maintenance of sinus rhythm after cardioversion of atrial fibrillation or flutter (See comments). JAMA 267:3289–3293

    Article  PubMed  CAS  Google Scholar 

  19. Reimold SC, Cantillon CO, Friedman PL, Antman EM (1993) Propafenone versus sotalol for suppression of recurrent symptomatic atrial fibrillation. Am J Cardiol 71:558–563

    Article  PubMed  CAS  Google Scholar 

  20. Diker E, Aydogdu S, Ozdemir M, Kural T, Polat K, Cehreli S, Erdogan A, Goksel S (1996) Prevalence and predictors of atrial fibrillation in rheumatic valvular heart disease. Am J Cardiol 77:96–98

    Article  PubMed  CAS  Google Scholar 

  21. Frost L, Jacobsen CJ, Christiansen EH, Molgaard H, Pilegaard H, Hjortholm K, Thomsen PE (1995) Hemodynamic predictors of atrial fibrillation or flutter after coronary artery bypass grafting. Acta Anaesthesiol Scand 39:690–697

    Article  PubMed  CAS  Google Scholar 

  22. Gosselink AT, Crijns HJ, Hamer HP, Hillege H, Lie KI (1993) Changes in left and right atrial size after cardioversion of atrial fibrillation:role of mitral valve disease. J Am Coll Cardiol 22:1666–1672

    Article  PubMed  CAS  Google Scholar 

  23. Wyndham CR (1982) What’s wrong with the atrium in patients with atrial fibrillation? Int J Cardiol 2:199–202

    Article  PubMed  CAS  Google Scholar 

  24. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92:1954–1968

    PubMed  CAS  Google Scholar 

  25. Zipes DP (1997) Atrial fibrillation. A tachycardia-induced atrial cardiomyopathy (Editorial;Comment). Circulation 95:562–564

    PubMed  CAS  Google Scholar 

  26. Lee KS, Marban E, Tsien RW (1985) Inactivation of calcium channels in mammalian heart cells:joint dependence on membrane potential and intracellular calcium. J Physiol (Lond) 364:395–411

    CAS  Google Scholar 

  27. Nitta J, Furukawa T, Marumo F, Sawanobori T, Hiraoka M (1994) Subcellular mechanism for Ca(2+)-dependent enhancement of delayed rectifier K+ current in isolated membrane patches of guinea pig ventricular myocytes. Circ Res 74:96–104

    PubMed  CAS  Google Scholar 

  28. Goette A, Honeycutt C, Langberg JJ (1996) Electrical remodeling in atrial fibrillation. Time course and mechanisms. Circulation 94:2968–2974

    PubMed  CAS  Google Scholar 

  29. Smeets JL, Allessie MA, Lammers WJ, Bonke FI, Hollen J (1986) The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium. The role of heart rate, autonomic transmitters, temperature, and potassium. Circ Res 58:96–108

    PubMed  CAS  Google Scholar 

  30. Ellenbogen KA, Clemo HF, Stambler BS, Wood MA, Vander Lugt JT (1996) Efficacy of ibutilide for termination of atrial fibrillation and flutter. Am J Cardiol 78:42–45

    Article  PubMed  CAS  Google Scholar 

  31. Falk RH, Pollak A, Singh SN, Friedrich T (1997) Intravenous dofetilide, a class III antiarrhythmic agent, for the termination of sustained atrial fibrillation or flutter. Intravenous dofetilide investigators (See comments). J Am Coll Cardiol 29:385–390

    Article  PubMed  CAS  Google Scholar 

  32. Franza Mr, Karasik PL, Li C, Moubarak J, Chavez M. Electrical remodeling of the human atrium: similar effects in patients with chronic atrial fibrillation and atrial flutter. J Am Coll Cardiol (in press)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Franz, M.R. (1997). Excitable Gap, Antiarrhythmic Actions, Electrical Remodeling: The Role Of MAP Recording in Atrial Fibrillation And Other Atrial Tachyarrhythmias. In: Franz, M.R., Schmitt, C., Zrenner, B. (eds) Monophasic Action Potentials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60851-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60851-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64585-3

  • Online ISBN: 978-3-642-60851-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics