Skip to main content

Electrophysiological Characteristics of the M Cell

  • Conference paper
Monophasic Action Potentials

Abstract

The discovery and characterization of cells in the midmyocardial layers of ventricular myocardium with unique repolarization properties have yielded some interesting observations relative to our understanding of the electrophysiology, pharmacology and pathophysiology of the ventricles of the heart and the electrocardiographic signals that they generate. Our principal aim in this chapter is to review recent experimental data that have advanced our knowledge of the electrical heterogeneity that exists in ventricular myocardium with a focus on the role of the M cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antzelevitch C, Sicouri S, Litovsky SH, Lukas A, Krishnan SC, Di Diego JM, Gintant GA, Liu DW (1991) Heterogeneity within the ventricular wall:electrophysiology and pharmacology of epicardial, endocardial and M cells. Circ Res 69:1427–1449

    PubMed  CAS  Google Scholar 

  2. Antzelevitch C, Sicouri S (1994) Clinical relevance of cardiac arrhythmias generated by afterdepolarizations. The role of M cells in the generation of U waves, triggered activity and Torsade de Pointes. J Am Coll Cardiol 23:259–277

    Article  PubMed  CAS  Google Scholar 

  3. Antzelevitch C, Sicouri S, Lukas A, Di Diego JM, Nesterenko VV, Liu DW, Roubache JF, Zygmunt AC, Zhang ZQ, Iodice A (1994) Clinical implications of electrical heterogeneity in the heart. The electrophysiology and pharmacology of epicardial, M and endocardial cells, in Podrid PJ, Kowey PR (eds):Cardiac arrhythmia:mechanism, diagnosis and management. William&Wilkins, Baltimore, pp 88–107

    Google Scholar 

  4. Antzelevitch C, Sicouri S, Lukas A, Nesterenko VV, Liu DW, Di Diego JM (1995) Regional differences in the electrophysiology of ventricular cells. Physiological and clinical implications. In Zipes DP, Jalife J (eds) Cardiac electrophysiology:from cell to bedside. Saunders, Philadelphia pp 228–245

    Google Scholar 

  5. Gilmour RF, Zipes DP (1980) Different electrophysiological responses of canine endocardium and epicardium to combined hyperkalemia, hypoxia, and acidosis. Circ Res 46:814–825

    PubMed  Google Scholar 

  6. Litovsky SH, Antzelevitch C (1988) Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res 62:116–126

    PubMed  CAS  Google Scholar 

  7. Krishnan SC, Antzelevitch C (1991) Sodium channel blockade produces opposite electrophysiologic effects in canine ventricular epicardium and endocardium. Circ Res 69:277–291

    PubMed  CAS  Google Scholar 

  8. Fedida D, Giles WR (1991) Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol (Lond) 442:191–209

    CAS  Google Scholar 

  9. Krishnan SC, Antzelevitch C (1993) Flecainide-induced arrhythmia in canine ventricular epicardium. Phase 2 reentry? Circulation 87:562–572

    PubMed  CAS  Google Scholar 

  10. Di Diego JM, Antzelevitch C (1993) Pinacidil-induced electrical heterogeneity and extra- systolic activity in canine ventricular tissues. Does activation of ATP-regulated potassium current promote phase 2 reentry? Circulation 88:1177–1189

    PubMed  Google Scholar 

  11. Liu DW, Gintant GA, Antzelevitch C (1993) Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res 72:671–687

    PubMed  CAS  Google Scholar 

  12. Lukas A, Antzelevitch C (1993) Differences in the electrophysiological response of canine ventricular epicardium and endocardium to ischemia. Role of the transient outward current. Circulation 88:2903–2915

    PubMed  CAS  Google Scholar 

  13. Di Diego JM, Antzelevitch C (1994) High [Ca2+]-induced electrical heterogeneity and extrasystolic activity in isolated canine ventricular epicardium. Phase 2 reentry. Circulation 89:1839–1850

    PubMed  Google Scholar 

  14. Yan GX, Antzelevitch C (1996) Cellular basis for the electrocardiographic J wave. Circulation 93:372–379

    CAS  Google Scholar 

  15. Sicouri S, Antzelevitch C (1991) A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ Res 68:1729–1741

    PubMed  CAS  Google Scholar 

  16. Sicouri S, Antzelevitch C (1993) Drug-induced afterdepolarizations and triggered activity occur in a discrete subpopulation of ventricular muscle cell (M cells) in the canine heart. Quinidine and digitalis. J Cardiovasc Electrophysiol 4:48–58

    Article  PubMed  CAS  Google Scholar 

  17. Sicouri S, Fish J, Antzelevitch C (1994) Distribution of M cells in the canine ventricle. J Cardiovasc Electrophysiol 5:824–837

    Article  PubMed  CAS  Google Scholar 

  18. Sicouri S, Antzelevitch C (1995) Electrophysiologic characteristics of M cells in the canine left ventricular free wall. J Cardiovasc Electrophysiol 6:591–603

    Article  PubMed  CAS  Google Scholar 

  19. Drouin E, Charpentier F, Gauthier C, Laurent K, Le Marec H (1995) Electrophysiological characteristics of cells spanning the left ventricular wall of human heart:evidence for the presence of M cells. J Am Coll Cardiol 26:185–192

    Article  PubMed  CAS  Google Scholar 

  20. Liu DW, Antzelevitch C (1995) Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res 76:351–365

    PubMed  CAS  Google Scholar 

  21. Antzelevitch C, Nesterenko VV, Yan GX (1996) The role of M cells in acquired long QT syndrome, U waves and torsade de pointes. J Electrocardiol 28 [Suppl]:131–138

    Google Scholar 

  22. Sicouri S, Quist M, Antzelevitch C (1996) Evidence for the presence of M cells in the guinea pig ventricle. J Cardiovasc Electrophysiol 7:503–511

    Article  PubMed  CAS  Google Scholar 

  23. Anyukhovsky EP, Sosunov EA, Rosen MR (1996) Regional differences in electrophysiologic properties of epicardium, midmyocardium and endocardium:in vitroand in vivocorrelations. Circulation 94:1981–1988

    PubMed  CAS  Google Scholar 

  24. Eddlestone GT, Zygmunt AC, Antzelevitch C (1996) Larger late sodium current contributes to the longer action potential of the M cell in canine ventricular myocardium. PACE 19:11–569 (abstr)

    Google Scholar 

  25. Burashnikov A, Antzelevitch C (1995) a-Agonists produce opposite effect on action potential duration in Purkinje and M cells isolated from the canine left ventricle. PACE 18:11–935 (abstr)

    Google Scholar 

  26. Burashnikov A, Antzelevitch C (1996) Mechanisms underlying early afterdepolarization activity are different in canine Purkinje and M cell preparations. Role of intracellular calcium. Circulation 94:1-527 (abstr)

    Google Scholar 

  27. Sicouri S, Antzelevitch C (1993) Distribution of M cells in the canine ventricle. PACE 16(II):898 (abstr)

    Google Scholar 

  28. Liu DW, Gintant GA, Antzelevitch C (1992) Electrophysiologic characteristics of myocytes from epicardium, midmyocardium and endocardium of the canine left ventricle. PACE 15 (II):537 (abstr)

    Google Scholar 

  29. Antzelevitch C, Sun ZQ, Zhang ZQ, Yan GX (1996) Cellular and ionic mechanisms underlying erythromycin-induced long QT and torsades de pointes. J Am Coll Cardiol 28:1836–1848

    Article  PubMed  CAS  Google Scholar 

  30. Yan GX, Antzelevitch C (1995) Delayed repolarization of M cells underlies the manifestation of U waves, notched T waves and long QT intervals in the electrocardiogram (ECG). Circulation 92:1–480 (abstr)

    Google Scholar 

  31. Weissenburger J, Nesterenko VV, Antzelevitch C (1995) Intramural monophasic action potentials (MAP) display steeper APD-rate relations and higher sensitivity to class III agents than epicardial and endocardial MAPs:characteristics of the M cell in vivo. Circulation 92:1–300 (abstr)

    Google Scholar 

  32. Weissenburger J, Nesterenko VV, Antzelevitch C (1996) M cells contribute to transmural dispersion of repolarization and to the development of Torsade de Pointes in the canine heart in vivo. PACE 19:11–707 (abstr)

    Google Scholar 

  33. El-Sherif N, Caref EB, Yin H, Restivo M (1996) The electrophysiological mechanism of ventricular arrhythmias in the long QT syndrome. Tridimensional mapping of activation and recovery patterns. Circ Res 79:474–492

    PubMed  CAS  Google Scholar 

  34. Plonsey R (1977) Action potential sources and their volume conductor fields. Proc IEEE 65:601–611

    Article  Google Scholar 

  35. Spach MS, Barr RC, Serwer GA, Kootsey JM, Johnson EA (1972) Extracellular potentials related to intracellular action potentials in the dog Purkinje system. Circ Res 30:505–519

    PubMed  CAS  Google Scholar 

  36. Friegang KD, Becker R, Bauer A, Voss F, Senges J, Brachmann J (1996) Electrophysiological properties of individual muscle layers in the in vivocanine heart. J Am Coll Cardiol 27[Suppl A]:124A (abstr)

    Google Scholar 

  37. Sosunov EA, Anyukhovsky EP, Rosen MR (1996) Comparison of repolarization of cells from different layers of myocardium in vitroand in vivo. Biophys J 70 (2 Pt 2 ):A276 (abstr)

    Google Scholar 

  38. Duker GD, Linhardt GS, Rahmberg M (1994) An animal model for studying class Ill-induced proarrhythmias in the halothane-anesthetized dog. J Am Coll Cardiol 23:326A (abstr)

    Google Scholar 

  39. Burgess MJ, Green LS, Millar K, Wyatt RF, Abildskov JA (1972) The sequence of normal ventricular recovery. Am Heart J 84:660–669

    Article  PubMed  CAS  Google Scholar 

  40. Lukas A, Antzelevitch C (1996) The contribution of K+ currents to electrical heterogeneity across the canine ventricular wall under normal and ischemic conditions. In:Dhalla NS, Pierce GN, Panagia V (eds) Pathophysiology of heart failure. Academic Publishers, Boston, pp 440–456

    Google Scholar 

  41. Antzelevitch C (1995) Repolarizing currents in canine ventricular myocardium. Regional differences and similarities. In:Vereecke J, Verdonck F, van Boagaert P (eds):Potassium channels in normal and pathological conditions. In honor of Professor Edward Carmeliet. Leuven, Leuven University Press, pp 256–259

    Google Scholar 

  42. Roden DM, George AL, Bennett PB (1995) Recent advances in understanding the molecular mechanisms of the long QT syndrome. J Cardiovasc Electrophysiol 6:1023–1031

    Article  PubMed  CAS  Google Scholar 

  43. Napolitano C, Priori SG, Schwartz PJ (1994) Torsade de pointes. Mechanisms and management. Drugs 47:51–65

    Article  PubMed  CAS  Google Scholar 

  44. Shimizu W, Ohe T, Kurita T, Takaki H, Aihara N, Kamakura S, Matsuhisa M, Shimomura K (1991) Early afterdepolarizations induced by isoproterenol in patients with congenital long QT syndrome. Circulation 84:1915–1923

    PubMed  CAS  Google Scholar 

  45. Shimizu W, Ohe T, Kurita T, Kawade M, Arakaki Y, Aihara N, Kamakura S, Kamiya T, Shimomura K (1995) Effects of verapamil and propranolol on early afterdepolarizations and ventricular arrhythmias induced by epinephrine in congenital long QT syndrome. J Am Coll Cardiol 26:1299–1309

    Article  PubMed  CAS  Google Scholar 

  46. January CT, Riddle JM, Salata J J (1988) A model for early afterdepolarizations:induction with the [Ca2+] channel agonist BAY K 8644. Circ Res 62:563–571

    PubMed  CAS  Google Scholar 

  47. Binah O, Rosen MR (1992) Mechanisms of ventricular arrhythmias. Circulation 85[Suppl I]:(I)25–(I)31

    Google Scholar 

  48. Burashnikov A, Antzelevitch C (1995) Acceleration-induced early afterdepolarizations and triggered activity. Circulation 92:1–434 (abstr)

    Google Scholar 

  49. Li GR, Feng J, Carrier M, Nattel S (1995) Transmural electrophysiologic heterogeneity in the human ventricle. Circulation 92:1–158 (abstr)

    Google Scholar 

  50. Watanabe Y (1975) Purkinje repolarization as a possible cause of the U wave in the electrocardiogram. Circulation 51:1030–1037

    PubMed  CAS  Google Scholar 

  51. Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia:HERG encodes the IKr potassium channel. Cell 299–307

    Google Scholar 

  52. Wang Q, Shen J, Splawski I, Atkinson D, Li ZZ, Robinson JL, Moss AJ, Towbin JA, Keating MT (1995) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805–811

    Article  PubMed  CAS  Google Scholar 

  53. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT (1995) A molecular basis for cardiac arrhythmia:HERG mutations cause long QT syndrome. Cell 80:795–803

    Article  PubMed  CAS  Google Scholar 

  54. Sicouri S, Antzelevitch C (1991) Afterdepolarizations and triggered activity develop in a select population of cells (M cells) in canine ventricular myocardium:the effects of acety- lstrophantidin and Bay K 8644. PACE 14:1714–1720

    PubMed  CAS  Google Scholar 

  55. Yang T, Roden DM (1996) Extracelllular potassium modulation of drug block of IKr. Implications for torsade de pointes and reverse use-dependence. Circulation 93:407–411

    PubMed  CAS  Google Scholar 

  56. El-Sherif N, Restivo M, Caret EB, Piracha M (1996) Electrophysiologic mechanism(s) of torsade de pointes ventricular tachyarrhythmias (TdP). Tridimensional mapping of ventricular activation. Circulation 92:1–641 (abstr)

    Google Scholar 

  57. Zhang S, Yin H, Piracha M, El-Sherif N (1996) Marked spatial dispersion of repolarization across the ventricular wall in a model of long QT syndrome and torsade de pointes. Biophys J 70:A277 (abstr)

    Google Scholar 

  58. Vos MA, Verduyn SC, Gorgels APM, Lipcsei GC, Wellens HJ (1995) Reproducible induction of early afterdepolarizations and torsade de pointes arrhythmias by d-sotalol and pacing in dogs with chronic atrioventricular block. Circulation 91:864–872

    PubMed  CAS  Google Scholar 

  59. Verduyn SC, Vos MA, Gorgels APM, van der Zande J, Leunissen JDM, Wellens HJ (1995) The effect of flunarizine and ryanodine on acquired torsades de pointes arrhythmias in the intact canine heart. J Cardiovasc Electrophysiol 6:189–200

    Article  PubMed  CAS  Google Scholar 

  60. Coumel P (1990) Early afterdepolarizations and triggered activity in clinical arrhythmias. In:Rosen MR, Janse MJ, Wit AL (eds) Cardiac electrophysiology:a textbook. Futura, Mount Kisco, pp 387–411

    Google Scholar 

  61. Moss AJ (1995) Long QT syndrome. In:Podrid PJ, Kowey PR (eds) Cardiac arrhythmia:mechanisms, diagnosis and management. William Wilkins, Baltimore, pp 1110–1120

    Google Scholar 

  62. Locati EH, Maison-Blanche P, Dejode P, Cauchemez B, Coumel P (1995) Spontaneous sequences of onset of torsade de pointes in patients with acquired prolonged repolarization:quantitative analysis of Holter recordings. J Am Coll Cardiol 25:1564–1575

    Article  PubMed  CAS  Google Scholar 

  63. Cobbe SM, Hoffman E, Ritzenhoff A, Brachmann J, Kubler W, Senges J (1983) Action of sotalol on potential reentrant pathways and ventricular tachyarrhythmias in conscious dogs in the late postmyocardial infarction phase. Circulation 68:865–871

    Article  PubMed  CAS  Google Scholar 

  64. Habbab MA, El-Sherif N (1992) TU alternans, long QTU, and torsade de pointes:clinical and experimental observations. PACE 15:916–931

    PubMed  CAS  Google Scholar 

  65. Sasyniuk BI, Brunet S (1995) Torsade de pointes induced by quinidine, d-sotalol, and E- 4031 in the isolated rabbit heart:importance of interval dependent dispersion of repolarization. PACE 18:11–904 (abstr)

    Google Scholar 

  66. Rubart M, Pressler ML, Pride HP, Zipes DP (1993) Electrophysiological mechanisms in a canine model of erythromycin-associated long QT syndrome. Circulation 88:1832 - 1844

    PubMed  CAS  Google Scholar 

  67. Antzelevitch C (1997) The M cell. Invited editorial comment. J Cardiovasc Pharmacol Ther 2:73–76

    Article  PubMed  Google Scholar 

  68. Chauhan VS, Skanes AC, Tang ASL (1996) Dynamics and dispersion of QT intervals:Q- wave versus non Q-wave myocardial infarction. Circulation 94:1–433 (abstr)

    Google Scholar 

  69. Nesterenko VV, Weissenburger J (1995) Experimental evidence for re-interpretation of basis for the monophasic action potential:a new technique with large amplitude and stable transmural signals. Circulation 92:1–299 (abstr)

    Google Scholar 

  70. Shimizu W, Antzelevitch C (1997) Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade de pointes in LQT2 as well as LQT3 models of the long QT syndrome. Circulation, in press

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Antzelevitch, C., Nesterenko, V.V., Shimizu, W., Di Diego, J.M. (1997). Electrophysiological Characteristics of the M Cell. In: Franz, M.R., Schmitt, C., Zrenner, B. (eds) Monophasic Action Potentials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60851-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60851-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64585-3

  • Online ISBN: 978-3-642-60851-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics