Skip to main content

Abstract

Background and Objective: Evidence from multiple sources indicates that maternal blood glucose levels correlate directly with size at birth and that both diet and exercise alter them. The purpose of these preliminary studies was to test the hypothesis that the carbohydrate mix in a pregnant woman’s diet modifies the primary effect of exercise on feto-placental growth through its effects on maternal blood glucose levels.

Experimental Designs and Methods: A prospective randomized design was used to examine the effects of two isocaloric, high carbohydrate diets combined with regular exercise on maternal blood glucose levels and various indices of morphometric outcome in healthy pregnant women (n = 12). The diets differed only in the type of carbohydrate ingested. Those in one had low glycemic indices and those in the other had high glycemic indices.

Results: During pregnancy, women on the low glycemic carbohydrate diet experienced no significant change in their glycemic response to mixed caloric intake while those who switched to the high glycemic carbohydrate diet experienced a 190 % increase in their response. The later was associated with larger placental size, increased birth weight, and greater maternal weight gain.

Conclusion: These preliminary data indicate that the type of dietary carbohydrate in a physically active pregnant woman’s diet influences her blood glucose profile which alters placental growth, size at birth, and weight gain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Diet, Exercise, and Feto-placental Growth

  1. Fräser RB (1981) The effect of pregnancy on the normal ränge of the oral glucose tolerance test in the African female: pregnant and non-pregnant. E Afr Med J 58:90–94

    CAS  Google Scholar 

  2. Fraser RB, Ford FA, Lawrence GF (1988) Insulin sensitivity in third trimester pregnancy. A randomized study of dietary effects. Br J Obstet Gynaecol 95:223–229

    Article  PubMed  Google Scholar 

  3. Ziegler E (1976) Sugar consumption and prenatal acceleration I. Studies in the history of medicine on the coincidence and connection of these 2 secular phenomena. Helv Paediatr Acta 31:347–363

    PubMed  CAS  Google Scholar 

  4. Fukagawa N, Anderson JW, Hageman G, Young VR, Minaker KL (1990) High-carbohydrate, high-fiber diets increase peripheral insulin sensitivity in healthy young and old adults. Am J Clin Nutr 52:524–528

    PubMed  CAS  Google Scholar 

  5. Clapp JF (1994) Physiological adaptation to intrauterine growth retardation. In: Ward RNT, Smith SK, Donnai D (eds) Early fetal growth and development. RCOG Press, London, pp 371–382.

    Google Scholar 

  6. Clapp JF (1996) Exercise during pregnancy. In: Bar-Or O, Lamb D, Clarkson P (eds) Perspectives in exercise science and sports medicine: exercise and the female - a life span approach. Cooper, Carmel, IN, pp 413–451

    Google Scholar 

  7. Clapp JF, Capeless EL (1991) The changing glycemic response to exercise during pregnancy. Am J Obstet Gynecol 165:1678–1683

    PubMed  CAS  Google Scholar 

  8. Mellor D (1983) Nutritional and placental determinants of fetal growth rate in sheep and consequences for the newborn lamb. Br Vet J 139:307–324

    PubMed  CAS  Google Scholar 

  9. Langer O, Anyaegbunam A, Brustman L, Divon M (1989) Management of women with one abnormal oral glucose tolerance test value reduces adverse outcome in pregnancy. Am J Obstet Gynecol 161:593–599

    PubMed  CAS  Google Scholar 

  10. Langer O, Levy J, Brustman L, Anyaegbunam A, Merkatz R, Divon M (1989) Glycemic control in diabetes mellitus-How tight is tight enough: small for gestational age versus large for gestational age. Am J Obstet Gynecol 161:646–653

    PubMed  CAS  Google Scholar 

  11. Jovanovic-Peterson L, Peterson CM, Reed GF, Metzger BE, Mills JL, Knopp RH, Arrons JH (1991) NICHD diabetes in early pregnancy study. Maternal postprandial glucose levels and infant birth weight: The diabetes and early pregnancy study. Am J Obstet Gynecol 164:103–111

    PubMed  CAS  Google Scholar 

  12. Clapp JF, Szeto HH, Larrow RW, Hewitt J, Mann LI (1981) Fetal metabolic response to experimental placental vascular damage. Am J Obstet Gynecol 140:446–454

    PubMed  Google Scholar 

  13. Lang U, Baker RS, Yang DS, Khoury J, Künzel W, Clark KE (1996) Umbilikale Perfusion bei experimenteller fetaler Wachstumsretardierung. Perinatal-Medizin 8:71–75

    Google Scholar 

  14. Clapp JF, Little KD, Capeless EL (1993) Fetal heart rate response to various intensities of recreational exercise during mid and late pregnancy. Am J Obstet Gynecol 168: 198–206

    PubMed  Google Scholar 

  15. Bonnen A, Campagna P, Gilchrist L, Young DC, Beresford P (1992) Substrate and endocrine responses during exercise at selected stages of pregnancy. J Appl Physiol 73: 134–142

    Google Scholar 

  16. Jovanovic-Peterson L, Peterson CM (1991) Is exercise safe or useful for gestational diabetic women?Diabetes 40 (suppl 2): 189–181

    Google Scholar 

  17. Bung P, Artal R, Khodiginan N, Kjos S (1991) Exercise in gestational diabetes: an optional therapeutic approach. Diabetes 40 (suppl 2): 182–185

    PubMed  Google Scholar 

  18. Peterson CM, Jovanovic-Peterson L (1991) Percentage of carbohydrate and glycemic response to breakfast, lunch, and dinner in women with gestational diabetes. Diabetes 40 (suppl 2): 172–174

    PubMed  Google Scholar 

  19. Bogardus C, Ravussin E, Robbins DC, Wolfe RR, Horton ES, Sims EA (1984) Effects of physical training and diet therapy on carbohydrate metabolism in patients with glucose intolerance and non-insulin-dependent diabetes mellitus. Diabetes 33:311–318

    Article  PubMed  CAS  Google Scholar 

  20. Kiens B, Richter EA (1996) Types of carbohydrate in an ordinary diet affect insulin action and muscle substrates in humans. Am J Clin Nutr 63:47–53

    PubMed  CAS  Google Scholar 

  21. Clapp JF (1997) The potential value of diet and exercise in the prevention and treatment of gestational diabetes mellitus. Diabetes (in press)

    Google Scholar 

  22. Foster-Powell K, Miller JB (1995) International tables of glycemic index. Am J Clin Nutr 62:871S–893S

    PubMed  CAS  Google Scholar 

  23. Wolever TMS, Jenkins DJA (1986) The use of the glycemic index in predicting the blood glucose response to mixed meals. Am J Clin Nutr 43:167–172

    PubMed  CAS  Google Scholar 

  24. Harrison GC, Buskirk ER, Carter JEL et al. (1988) Skinfold thicknesses and measurement technique. In: Lohman TG, Roche AF, Martorell R (eds) Anthropometric Standardization Reference Manual. Human Kinetics, Champaign, IL, pp 55–70

    Google Scholar 

  25. Clapp JF, Capeless EL (1991) The V02 max of recreational athletes before and after pregnancy. Med Sei Sports Exerc 23: 1128–1191

    Google Scholar 

  26. Golding LA, Myers CR, Sinning WE (eds) (1989) Y’s Way To Physical Fitness. The Complete Guide to Fitness Testing and Instruction. Human Kinetics, Champaign, IL, pp 68–89

    Google Scholar 

  27. Clapp JF, Rizk KH, Appleby-Wineberg S, Crass JR (1995) Second-trimester placental volumes predict birth weight at term. J Soc Gynecol Invest 2:19–22

    Article  Google Scholar 

  28. Clapp JF (1996) Morphometric and neurodevelopmental outcome at age five years of the offspring of women who continued to exercise during pregnancy. J Pediatr 129: 856–863

    Article  PubMed  Google Scholar 

  29. Catalano PM, Thomas AJ, Avalone DA, Amini SB (1995) Antropometric estimation of neonatal body composition. Am J Obstet Gynecol 173:1176–1181

    Article  PubMed  CAS  Google Scholar 

Prostaglandins and Parturition

  1. Challis JRG, Mitchell MD (1994) Basic mechanisms of preterm labor. New perspectives for the effective treatment of preterm labor - an international consensus. Res Clin Forums 16:39–52

    Google Scholar 

  2. Lye SJ, Challis JRG (1989) Paracrine and endocrine control of myometrial activity. In: Gluckman PD, Johnston BM, Nathanielsz PW (eds) Advances in fetal physiology: Review in honour of G.C. Liggins. Perinatology Press, Ithaca NY, pp 361–375(Advances in Perinatal Medicine VIII)

    Google Scholar 

  3. Morham SG, Langenbach R, Loftin CE et al. (1995) Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 83:473–482

    Article  PubMed  CAS  Google Scholar 

  4. Langenbach R, Morham SG, Tiano HF et al. (1995) Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell 83:483–492

    Article  PubMed  CAS  Google Scholar 

  5. Challis JRG, Lye SJ (1994) Parturition. In: Knobil E, Neill JD (eds) The physiology of reproduction, vol 2. Raven, pp 985-1031

    Google Scholar 

  6. Hla T, Neilson K (1992) Human cyclooxygenase-2 cDNA. Proc Nat Acad Sei (USA) 89:7384–7388

    Article  CAS  Google Scholar 

  7. Negishi M, Sugimoto Y, Ichikawa A (1995) Molecular mechanisms of diverse actions of Prostanoid receptors. Biochim Biophys Acta 1259:109–120

    PubMed  Google Scholar 

  8. Liggins BJ, Fairclough RJ, Grieves SA, Kendall JZ, Knox BS (1973) The mechanism of initiation of parturition in the ewe. Recent Prog Horm Res 29:111–159

    PubMed  CAS  Google Scholar 

  9. Fint APF, Anderson ABM, Steele PA, Turnbull AC (1975) The mechanism by which foetal cortisol controls the onset of parturition in the sheep. Biochem Soc Trans 3:1189

    Google Scholar 

  10. Mason JL, France JT, Magness RR, Murray AB, Rosenfeld CR (1989) Ovine placental Steroid 17 α-hydroxylase/C-17, 20-lyase, aromatase and sulphatase in dexamethasoneinduced and natural parturition. J Endocrinol 122:351

    Article  PubMed  CAS  Google Scholar 

  11. Challis JRG, Dilley SR, Robinson JS, Thorburn G (1976) Prostaglandins in the circulation of the fetal lamb. Prostaglandins 11:1041–1052

    Article  PubMed  CAS  Google Scholar 

  12. Langlois DA, Fraher LJ, Khalil MW, Fräser M, Challis JRG(1993) Preferential increase in cyclooxygenase compared to lipoxygenase activity in sheep placenta and amnion at term pregnancy and after intrafetal glucocorticoid administration. J Endocrinol 139: 195–204

    Article  PubMed  CAS  Google Scholar 

  13. Bennett PR, Slater D, Sullivan M, Eider MG, Moore GE (1993) Changes in amniotic arachidonic acid metabolism associated with increased cyclooxygenase gene expression. Br J Obstet Gynaecol 100:1037–1042

    Article  PubMed  CAS  Google Scholar 

  14. Gibb W, Matthews SG, Challis JRG (1996) Localization of Prostaglandin H synthase (PGHS) and PGHS mRNA in ovine placenta throughout gestation. Biol Reprod 54:654–659

    Article  PubMed  CAS  Google Scholar 

  15. Wu WX, Ma XH, Zhang Q, Owiny JR, Nathanielsz PW (1996) Regulation of Prostaglandin (PG) endoperoxide synthase (PGHS) 1 and 2 by estradiol (E2) in nonpregnant ovine myometrium (MYO) and endometrium (ENDO) in vivo. 10th Intern. Congress of Endocrinology, San Francisco. The Endocrine Society Press, Bethesda, MD. Abstract Pl-250:197

    Google Scholar 

  16. Liggins GC (1973) Hormonal interactions in the mechanism of parturition. In: Klopper A, Gardner J (eds) Endocrine factors in labour: Proc. Symp. At Univ. of Aberdeen, July 19-22, 1972, Memoirs of the Soc for Endocrin, Nr. 20. Cambridge University Press, London (UK), pp 119–139

    Google Scholar 

  17. Rainey WE, Danielle N, Cline N, Mason JI (1991) Prostaglandin E2 is a positive regulator of adrenocorticotropin receptors, 3β-hydroxysteroid dehydrogenase, and 17a-hydroxylase expression in bovine adrenocortical cells. Endocrinology 129:1333–1339

    Article  PubMed  CAS  Google Scholar 

  18. Boggaram V, Simpson ER, Waterman MR (1984) Induction of synthesis of bovine adrenocortical cytochromes P450scc, P45011β , 3, P450C21, and adrenodoxin by Prostaglandins E2 and F2 α and cholera toxin. Arch Biochem Biophys 231:271–279

    Article  PubMed  CAS  Google Scholar 

  19. Hirst JJ, Taixeira FJ, Zakar T, Olson DM (1995) Prostaglandin endoperoxide-H synthase-1 and -2 messenger ribonucleic acid levels in human amnion with spontaneous labor onset. J Clin Endocrin Metab 80:517–523

    Article  CAS  Google Scholar 

  20. Skinner KA, Challis JRG (1985) Changes in the synthesis and metabolism of Prostaglandins by human fetal membranes and decidua at labor. Am J Obstet Gynecol 151:519–523

    PubMed  CAS  Google Scholar 

  21. Gibb W, Sun M (1996) Localization of Prostaglandin H synthase type 2 protein and mRNA in term human fetal membranes and decidua. J Endoer 150:497–503

    Article  CAS  Google Scholar 

  22. Cheung PYC, Walton JC, Tai H-H, Riley SC, Challis JRG (1990) Immunohistocytochemical distribution and localization of 15-hydroxyprostaglandin dehydrogenase in human fetal membranes, decidua and placenta. Am J Obstet Gynecol 163:1445–1449

    PubMed  CAS  Google Scholar 

  23. Nakla S, Skinner K, Mitchell BF, Challis JRG (1986) Changes in Prostaglandin transfer across human fetal membranes obtained after spontaneous labour. Am J Obstet Gynecol 155:1337–1341

    PubMed  CAS  Google Scholar 

  24. Slater DM, Berger LC, Newton R, Moore GE, Bennett PR (1995) Expression of cyclooxygenase type-1 and type-2 in human fetal membranes at term. Am J Obstet Gynecol 172:77–82

    Article  PubMed  CAS  Google Scholar 

  25. Sun M, Ramirez M, Challis JRG, Gibb W (1996) Immunohistochemical localization of the glucocorticoid reeeptor in human fetal membranes and decidua at term and preterm delivery. J Endoer 149:243–248

    Article  CAS  Google Scholar 

  26. Economopoulos P, Sun M, Purgina B, Gibb W (1996) Glucocorticoids stimulate Prostaglandin H synthase type 2 (PGHS-2) in the fibroblast cells in human amnion cultures. Mol Cell Endocrinol 117:141–147

    Article  PubMed  CAS  Google Scholar 

  27. Gibb W, Lavoie JC (1990) Effects of glucocorticoids on Prostaglandin formation by human amnion. Can J Physiol Pharmacol 68:671–676

    Article  PubMed  CAS  Google Scholar 

  28. Potestio F, Zakar T, Olson DM (1988) Glucocorticoids stimulate Prostaglandin synthesis in human amnion cells by a reeeptor-mediated mechanism. J Clin Endocrinol Metab 67:1205–1210

    Article  PubMed  CAS  Google Scholar 

  29. Riley SC, Walton JC, Herlick JM, Challis JRG (1991) The localization and distribution of corticotrophin-releasing hormone in the human placenta and fetal membranes throughout gestation. J Clin Endocrinol Metab 72:1001–1007

    Article  PubMed  CAS  Google Scholar 

  30. Jones SA, Challis JRG (1990) Effects of corticotrophin-releasing hormone (CRH) and adrenocorticotrophin (ACTH) on Prostaglandin output by human placenta and fetal membranes. Gynecol Obstet Invest 29:165–168

    Article  PubMed  CAS  Google Scholar 

  31. Benedetto C, Petraglia F, Marozio L, Chiarolini L, Florio P, Genazzani AR, Massobrio M (1994) Corticotropin-releasing hormone increases Prostaglandin F2 activity on human myometrium in vitro. Am J Obstet Gynecol 171:126–131

    PubMed  CAS  Google Scholar 

  32. Sangha RK, Walton JC, Ensor CM, Tai H-H, Challis JRG (1994) Immunohistochemical localization, mRNA abundance and activity of 15-hydroxyprostaglandin dehydrogenase in placenta and fetal membranes during term and preterm labor. J Clin Endocrinol Metab 78:982–989

    Article  PubMed  CAS  Google Scholar 

  33. Van Meir CA, Sangha RK, Walton JC, Matthews SG, Keirse MJNC, Challis JRG (1996) Immunoreactive 15-hydroxyprostaglandin dehydrogenase (PGDH) is reduced in fetal membranes from patients at preterm delivery in the presence of infection. Placenta 17:291–297

    Article  PubMed  Google Scholar 

  34. Van Meir CA, Matthews SG, Keirse MJNC, Ramirez MM, Bocking A, Challis JRG (1997) 15-hydroxyprostaglandin dehydrogenase (PGDH): implications in preterm labor with and without ascending infection. J Clin Endocrinol Metab 82:969–972

    Article  PubMed  Google Scholar 

  35. Romero R, Munoz H, Gomez R et al. (1996) Increase in Prostaglandin bioavailability precedes the onset of human parturition. Prostaglandins, Leukotrienes and Essential Fatty Acids 54:187–191

    Article  CAS  Google Scholar 

  36. Romero R, Avila C, Brekus CA, Morotti R (1991) The role of systemic and intrauterine infection in preterm parturition. Ann NY Acad Sei 662:355–375

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clapp, J.F., Challis, J.R.G., Selbmann, HK. (1997). Grundlagenreferate. In: Künzel, W., Diedrich, K., Hohmann, M. (eds) 51. Kongreß der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60840-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60840-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64578-5

  • Online ISBN: 978-3-642-60840-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics