Informatikmethoden zur Analyse und Interpretation großer genomischer Datenmengen
  • Thomas Lengauer
Conference paper
Part of the Informatik aktuell book series (INFORMAT)


Im April 1997 hat die DFG die Einrichtung eines Schwerpunktprogramms mit dem oben genannten Titel beschlossen. Dieses Kurzpapier beschreibt Zielsetzung und Inhalt des Schwerpunktes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Goffeau et al, Life with 6000 genes, Science 274(1995) 546–567CrossRefGoogle Scholar
  2. [2]
  3. [3]
  4. [4]
  5. [5]
    P. Bork, C. Ouzounis, C. Sander, M. Scharf, R. Schneider, E. Sonnhammer, What’s in a genome?, Nature 358, 23 July 1992CrossRefGoogle Scholar
  6. [6]
    R.D. Fleischmann et. al., Whole-genome random sequencing and assembly of Haemophilus influenzaeRd, Science 269(1995) 496–512CrossRefGoogle Scholar
  7. [7]
    P. Bork, C. Ouzounis, G. Casari, R. Schneider, C. Sander, M. Dolan, W. Gilbert, P.M. Gillevet, Exploring the Mycoplasma capricolum genome: a minimal cell reveals its physiology, Mol Microbiol 16(1995) 955–967Google Scholar
  8. [8]
  9. [9]
    G. Casari, C. Ouzounis , A. Valencia, C. Sander, GeneQuiz II: automatic function assignment for genome sequence analysis. In Proceedings of the First Annual Pacific Symposium on Biocomputing, World Scientific (1996) 707–709Google Scholar
  10. [10]
  11. [11]
    K. Quandt, K. Grote, T. Werner, GenomeInspector: Basic software tools for analysis of spatial correlations between genomic structures within megabase sequences, Genomics 33(1996) 301–304CrossRefGoogle Scholar
  12. [12]
    D.E. Bassett Jr., M.S. Boguski, P. Hieter, Yeast genes and human disease, Nature 379(1996) 589–590CrossRefGoogle Scholar
  13. [13]
    W.A. Haseltine, Gensuche für medizinische Entwicklungen, Spektrum der Wissenschaf (Mai 1997) 64–71Google Scholar
  14. [14]
    T. Lengauer, Molekulare Bioinformatik: Eine interdisziplinare Herausforderung. In Highlights aus der Informatik (I. Wegener Hrsg.), Springer Verlag, Heidelberg (1996) 83–111CrossRefGoogle Scholar
  15. [15]
    M.S. Waterman, Introduction to Computational Biology, Chapman & Hall, New York, N. Y. (1995)zbMATHGoogle Scholar
  16. [16]
    A. Krogh, M. Brown, I.S. Mian, K. Sj6lander, D. Haussler, Hidden Markov Models in computational biology, J Mol Biol 235(1994) 1501–1531CrossRefGoogle Scholar
  17. [17]
    M. O. Dayhoff, R. M. Schwartz and B. C. Orcutt, A model of evolutionary changes in proteins, In Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 3, National Biomedical Research Foundation, Washington D.C. (1978) 345–352Google Scholar
  18. [18]
    S. A. Benner, M. A. Cohen and G. H. Gonnet, Empirical and structural models of insertion and deletions in the divergent evolution of proteins, J Mo l Biol 229(1993) 1065–1082.CrossRefGoogle Scholar
  19. [19]
    H.-T. Mevissen, M. Vingron, Quantifying the local reliability of a sequence alignment, Prot Eng 9(1996) 127–132CrossRefGoogle Scholar
  20. [20]
    J.U. Bowie, R. Luthy, D. Eisenberg, A method to identify protein sequences that fold into a known three-dimensional structure, Science 253 (1991) 164–170CrossRefGoogle Scholar
  21. [21]
    N.N. Alexandrov, R.N. Nussinov, R.M. Zimmer, Fast protein fold recognition via sequence to structure alignment and contact capacity potentials, In Proceedings of the Pacific Symposium on Biocomputing’96, Hrsg. Lawrence Hunter and Teri E. Klein, World Scientific Publishing, Singapore (1996) 53–72Google Scholar
  22. [22]
    R.H. Lathrop, T.F. Smith, Global optimum protein threading with gapped alignment and empirical pair score functions, J Mol Biol 255(1996) 641–655CrossRefGoogle Scholar
  23. [23]
    R. Thiele, R. Zimmer, T. Lengauer, Recursive dynamic programming for adaptive sequence and structure alignment, Proceedings of the Third International Conference on Intelligent Systems for Molecular Biology (ISMB’95), C. Rawlings et al., Hrsg., AAAI Press (1995) 384–392Google Scholar
  24. [24]
    B. Rost, C. Sander, Prediction of protein secondary structure at better than 70% accuracy, J Mol Biol 232(1993) 584–599CrossRefGoogle Scholar
  25. [25]
    B. Sandak, R. Nussinov, H.J. Wolfson, An automated computerd roboticsbased technique for 3-D flexible biomolecular docking and matching, Comput Appl Biosci 11(1995) 87–99Google Scholar
  26. [26]
    M. Rarey, B. Kramer, T. Lengauer, G. Klebe, A fast flexible docking method using an incremental construction algorithm, J Mol Biol 261(1996) 470–489CrossRefGoogle Scholar
  27. [27]
    H.-P. Lenhof, New contact measures for the protein docking problem, Proceedings of the First Annual International Conference on Computational Molecular Biology (RECOMB’97)(1997) 182–191.Google Scholar
  28. [28]
    I. Koch, T. Lengauer, E. Wanke, An algorithm for finding maximal common subtopologies in a set of protein structures, J Comp Biol 3(1996) 289–306CrossRefGoogle Scholar
  29. [29]
    T. Lengauer, M. Rarey, Methods for predicting molecular complexes involving proteins. Curr Opin Struc Biol 6, 3 (1996) 402–406CrossRefGoogle Scholar
  30. [30]
    S. Goto, H. Bono, H. Ogata, W. Fujibuchi, T. Nishioka, K. Sato and M. Kanehisa, Organizing and computing metabolic pathway data in terms of binary relations, Electronic Proceedings of the Pacific Symposium on Biocomputing (PSB’97), Scholar
  31. [31]
    P. Karp, M. Riley, S. Paley, S., A. Pellegrini-Toole, EcoCyc: Electronic encyclopedia of E. coli genes and metabolism, Nuc Acids Res 25(1997)Google Scholar
  32. [32]
    P. Karp, C. Ouzonis, S. Paley, Hincyc: A knowledge base of the complete genome and metabolic pathways of H. influenzae, Proceedings of theFourth International Symposium on Intelligent Systems for Molecular Biology (ISMB’96), AAAI Press (1996) 116–124Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Thomas Lengauer
    • 1
  1. 1.GMD-SCAISankt AugustinGermany

Personalised recommendations