DNA Conformation, Topology, and the Regulation of c-myc Expression

  • D. Levens
  • R. C. Duncan
  • T. Tomonaga
  • G. A. Michelotti
  • I. Collins
  • T. Davis-Smyth
  • T. Zheng
  • E. F. Michelotti
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 224)


The c-myc protein, a basic leucine zipper helix-loop-helix transcription factor is a key regulator of life and death [1–4]. c-myc expression is coupled to a multitude of physiological processes and has been reported to be regulated by a long list of hormones, cytokines, lymphokines, nutritional status, development and differentiation. Myc levels can be pharmacologically perturbed, at least transiently, by a host of agents. Consistent with the notion that c-myc expression is tightly regulated, both the mRNA and protein products of this gene are extraordinairily short-lived, 30 minutes and 20 minutes, respectively [1–4]. In growing cells wide-ranging excursions in c-myc expression are generally not seen, attesting either to tight homeostatic regulation or constitutive expression of c-myc.


Torsional Stress Single Stranded Loop Cellular Nucleic Acid Binding Protein Conventional Duplex Recombinant hnRNP 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cole MD (1986) The myc oncogene: its role in transformation and differentiation. Annu Rev Genet 20: 361–84 (1986)PubMedCrossRefGoogle Scholar
  2. 2.
    Spencer CA, Groudine M (1991) Control of c-myc regulation in normal and neoplastic cells. Adv Cancer Res 56:1–48PubMedCrossRefGoogle Scholar
  3. 3.
    Marcu KB, Bossone SA, Patal AJ (1992) myc function and regulation. Ann Rev Biochem 61:809–860PubMedCrossRefGoogle Scholar
  4. 4.
    Evan, GL, Littlewoocl TD (1993) The role of c-myc in cell growth Curr Opin Genet Dev 3:44–49PubMedCrossRefGoogle Scholar
  5. 5.
    Duyao MP, Buckler AJ., Sonnenshein, GE (1990) Interaction of an NF-kappa B-like factor with a site upstream of the c-myc promoter. Proc Natl Acad Sci USA 87:4727–473PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Hieben, SW, Lipp, M, Nevins, JR (1989) E1A-dependent trans-activation of the human c-myc promoter is mediated by the E2F factor. Proc Natl Acad Sci USA 86:3594–3598CrossRefGoogle Scholar
  7. 7.
    DesJardins, E, Hay, N (1993) Repeated CT-elements bound by zinc finger proteins control the absolute and relative activities of the two principal human c-myc promoters Mol Cell Biol 13:5710–5724PubMedCentralPubMedGoogle Scholar
  8. 8.
    Kakkis, E, Riggs KJ, Gillespie W, Calame K (1989) A transcriptional repressor of c-myc. Nature 339:718–721PubMedCrossRefGoogle Scholar
  9. 9.
    Riggs KJ, Saleque S, Wong KK, Merrell KT, Lee JS, Shi Y, Calame K (1993) Yin-yang 1 activates the c-myc promoter. Mol Cell Biol 13:7487–7495PubMedCentralPubMedGoogle Scholar
  10. 10.
    Siebenlist U, Hennighausen L, Battey J, Leder P (198) Chromatin structure and protien binding in the prtative regulatory region of the c-myc gene in Burkitt lymphoma Cell 37: 381–391Google Scholar
  11. 11.
    Takimoto M, Quinn JP, Farina AR, Staudt LM, Levens D (1989) Fos/jun and octamer-binding protein interact with a common site in a negative element of the human c-myc gene. J Biol Chem 264:8922–8999Google Scholar
  12. 12.
    Alesse E, Krutzsch H, Michelotti G, Levens D (1996) Mol Cell Diff 4:127–148Google Scholar
  13. 13.
    Bossone SA, Asselin C, Patel AJ, Marcu, KB (1992) MAZ, a zinc finger protein, binds to c-myc and C2 gene sequences regulating transcriptional initiation and termination. Proc Natl Acad Sci USA 89:7452–7456PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Filippova GN, Fagerlie S, Klenova EM, Myers C, Dehner Y, Goodwin G, Neiman PE, Collins SJ Lobanenkov VV (1996) An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol Cell Biol 16: 2802–2813PubMedCentralPubMedGoogle Scholar
  15. 15.
    Takimoto, M, Tomonaga, T, Matunis, M, Avigan, M, Krutzsch, H, Dreyfuss, G, and Levens, D (1993)Specific binding of heterogeneous ribonucleoprotein particle protein K to the human c-myc promoter, in vitro. J Biol Chem 268:18249–18258PubMedGoogle Scholar
  16. 16.
    Tomonaga T, Levens D (1995) Heterogeneous nuclear ribonucleoprotein K is a DNA binding transactivator. J Biol Chem 270: 4875–4881PubMedCrossRefGoogle Scholar
  17. 17.
    Michelotti EF, Michelotti GA, Aronsohn AI, Levens D (1996) Heterogenous Nuclear Ribonuclearprotein K Is a Transcription Factor Mol Cell Biol 16:2350–2360PubMedCentralPubMedGoogle Scholar
  18. 18.
    Tomonaga T, Levens D (1996) Activating transcription from single stranded DNA Proc Natl Acad Sci USA 93:5830–5835PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Duncan RD, Bazar L, Michelotti G, Tomonaga T, Krutzsch H, Avigan M, Levens D (199). A sequence-specific, single strand binding protein activates the far upstream of c-myc and defines a new DNA binding motif. Genes Dev. 8: 465–480.Google Scholar
  20. 20.
    Duncan R, Collins I, Tomonaga T, Zheng T, Levens D (1996) A Unique Sequence Motif is Found in the Carboxyl-Terminal Domain of the Single-Strand-Binding Protein FBP Mol Cell Biol 16:2274–2282Google Scholar
  21. 21.
    Davis-Smyth T, Duncan RC, Zheng T, Michelotti G, Levens D (1996) The Far Upstream Element-binding Proteins Comprise an Ancient Family of Single-strand DNA -binding Transactivators. J Biol Chem 271:31679–31687PubMedCrossRefGoogle Scholar
  22. 22.
    Michelotti E, Tomonaga T, Krutzsch H, Levens D (1995) Cellular nucleicacid binding protein regulates the CT-element of the human c-myc protooncogene. J Biol Chem 270: 9494–9499PubMedCrossRefGoogle Scholar
  23. 23.
    Bergemann AD, Johnson EM (1992) The HeLa Pur factor binds single-stranded DNA at a specific element conserved in gene flanking regions and origins of DNA replication. Mol Cell Biol 12: 1257–1265PubMedCentralPubMedGoogle Scholar
  24. 24.
    Bergemann AD, Ma Z-W, Johnson EM (1992) Sequence of cDNA comprising the human pur gene and properties of the encoded protein. Mol Cell Biol 12:5673–5682PubMedCentralPubMedGoogle Scholar
  25. 25.
    Sakatsume O, Tsuti H, Wang Y, Gao H, Tang X, Yamauchi T, Murata T, Itakura K, Yokoyama KK (1996) Binding of THZif-1, a MAZ-like Zinc Finger Protein to Nuclease-hypersensitive Element in the Promoter Region of c-Myc Protooncogene. J Biol Chem 271:31322–31333.PubMedCrossRefGoogle Scholar
  26. 26.
    Negishi Y, Nishita Y, Saegusa Y, Kakizaki I, Galli I, Kihara F, Tamai K, Miyajama N, Iguchi-Ariga S, Ariga H (1994) Identification and cDNA cloning of single stranded DNA binding proteins that interact with the region upstream of the human c-myc gene. Oncogene 9:1 133–1 143Google Scholar
  27. 27.
    Takai T, Nishita Y, Iguchi-Ariga S, Ariga, H (1994) Molecular cloning of MSSP-2, a c-myc gene single-strand binding protein: characterization of binding specificity and DNA replication activitv. Nucleic Acids Res 22:5576–5581PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Postei EH, Berberich SJ, Flint SJ, Ferrone CA (1993) Human c-myc Transcription Factor PuF Identified as nm23H2 Nucleoside Diphosphate Kinase, a Candidate Suppressor of Tumor Metastasis. Science:478–480Google Scholar
  29. 29.
    Vassilev L, Johnson EM (1990). An initiation zone of chromosomal DNA replication located upstream of the c-mvc izene in proliferating HeLa cells. Mol Cell Biol 10:4899–4904PubMedCentralPubMedGoogle Scholar
  30. 30.
    Mautner, J, Behrends, U, Hortnagel, K, Brielmeier, M, Hammerschmidt, W, Strobl, L, Bornkamm, GW, Polack, A (1996) c-myc expression is activated by the immunoglobulin kappa-enhancers from a distance of at least 30 kb but not by elements located within 50 kb of the unaltered c-myc locus in vivo. Oncogene 12: 1299–1307PubMedGoogle Scholar
  31. 31.
    Lavenu, A, Pourin, S, Babinet, C, Morello, D (1994) The cis-acting elements known to regulate c-myc expression ex vivo are not sufficient for correct transcription in vivo. Oncogene 9: 527–536PubMedGoogle Scholar
  32. 32.
    Dyson P, Littlewood T, Forster A, Rabbitts TH (1985) Chromatin structure of transcriptionally active and inactive human c-myc alleles. EMBO J 4:2885–2891PubMedCentralPubMedGoogle Scholar
  33. 33.
    Grosso LE, Pitot HC (1985) Chromatin structure of the c-myc gene in HL-60 cells during alterations of transcriptional activity.Cancer Res 45: 5035–41PubMedGoogle Scholar
  34. 34.
    Bentley D L, Groudine M (1986) A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature 321: 702–706PubMedCrossRefGoogle Scholar
  35. 35.
    Michelotti GA, Michelotti EF, Pullner A, Duncan RC, Eick D, Levens D (1996) Multiple Single-Stranded eis Elements Are Associated with Activated Chromatin of the Human c-myc Gene In Vivo. Mol Cell Biol 16:2656–2669PubMedCentralPubMedGoogle Scholar
  36. 36.
    Wittig B, Wolfl S, Dorbic T, Vahrson W, Rich A (1992) Transcription of human c-myc in permeabilized nuclei is associated with formation of Z-DNA in three discrete regions of the gene. EMBO J 11: 4653–466.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Krumm A., Meulia T, BrunvandM, Groudine M (1992) The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Genes Dev 6: 2201–2213PubMedCrossRefGoogle Scholar
  38. 38.
    Siomi H, Matunis MJ, Michael WM, Dreyfuss G (1993) The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Res 21: 1193–1198PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Siomi H, Choi M, Siomi MC, Nussbaum RL, Dreyfuss G (1994) Essential role for KH domains in RNA binding: impaired RNA binding by a mutation in the KH domain of FMR 1 that causes fragile X syndrome. Cell 77: 33–39PubMedCrossRefGoogle Scholar
  40. 40.
    Ashley CT, Wilkinson KD, Reines D, Warren ST (1993FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262: 563–566PubMedCrossRefGoogle Scholar
  41. 41.
    Wong G, Muller O, Clark R, Conroy L, Moran MF, Polakis P, McCormick F (1992) Molecular cloning and nucleic acid binding properties of the GAP-associated tyrosine phosphoprotein p62. Cell 69: 551–558PubMedCrossRefGoogle Scholar
  42. 42.
    Kahn J, Yun E, Crothers D (1994) Detection of localized DNA flexibility. Nature 368: 163–166PubMedCrossRefGoogle Scholar
  43. 43.
    Jensen PR, Loman L, Petra B, Van derWeijden C, Westerhoff HV (1995) Energy Buffering of DNA Structure Fails when Escerichia colia Runs Out of Substrate. J Bact 177:3430–3426Google Scholar
  44. 44.
    Cozzarelli NR, Wang JC (1990) DNA topology and its biological effects. Cold Spring Harbor Laboratory, Cold Spring Habor Press, NYGoogle Scholar
  45. 45.
    Freeman LA, Garrard WT (1992) DNA Supercoiling in Chromatin Structure and Gene Expression. Crit Rev Eukaryotic Gene Expr. 2:165–209Google Scholar
  46. 46.
    Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sc. USA 84: 7024–7027.CrossRefGoogle Scholar
  47. 47.
    Yin H, Wang MD, Svoboda K, Landick R, Block SM, Gelles J (1995) Transcription Against an Applied Force. Science 270:1653–1657PubMedCrossRefGoogle Scholar
  48. 48.
    Aller P, Rius C, Mata F, Zorilla A, Cabanas C, Bellon T, Bernabeu C (1992) Camptothecin induces differentiation and stimulates the expression of differentiation-related genes in U937 human promonocytic leukemia cells. Cancer Res 52: 1245–1251PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • D. Levens
    • 1
  • R. C. Duncan
    • 1
  • T. Tomonaga
    • 1
  • G. A. Michelotti
    • 1
  • I. Collins
    • 1
  • T. Davis-Smyth
    • 1
  • T. Zheng
    • 1
  • E. F. Michelotti
    • 1
  1. 1.The Laboratory of PathologyNational Cancer InstituteBethesdaUSA

Personalised recommendations