Advertisement

Myc Target Genes in Neoplastic Tranformation

  • H. Shim
  • B. C. Lewis
  • C. Dolde
  • Q. Li
  • C.-S. Wu
  • Y. S. Chun
  • C. V. Dang
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 224)

Abstract

Deregulated expression of the c-myc oncogene as a consequence of specific genetic alterations is sine-qua-non for certain B-cell neoplasms. Dissection of the c-Myc protein over the last decade reveals a structural organization that is characteristic of a transcription factor. c-Myc function is regulated by a complicated network of proteins that developed through millions of years of evolution and is likely to include a large repertoire of interacting proteins. Yet, the mechanism by which c-Myc or its retroviral counterpart v-Myc transforms cells is only beginning to emerge. Clues to the molecular basis of c-Myc mediated cellular transformation are being revealed by studies that identify target genes and events linking the deregulated expression of Myc and transformed phenotypes.

Keywords

Ornithine Decarboxylase Nuclear Respiratory Factor Prothymosin Alpha cdc25A Gene CDC2 Promoter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prendergast GC, Cole MD. Posttranscriptional regulation of cellular gene expression by the c-myc oncogene. Mol Cell Biol 1989; 9:124–34.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Prendergast GC, Diamond LE, Dahl D, Cole MD. The c-myc-regulated gene mrl encodes plasminogen activator inhibitor 1. Mol Cell Biol 1990; 10:1265–9.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Gibson AW, Ye R, Johnston RN, Browder LW. A possible role for c-Myc oncoproteins in post-transcriptional regulation of ribosomal RNA. Oncogene 1992; 7:2363–7.PubMedGoogle Scholar
  4. 4.
    Riccio A, Pedone PV, Lund LR, Olesen T, Olsen HS, Andreasen PA. Transforming growth factor beta 1-responsive element: closely associated binding sites for USF and CCAAT-binding transcription factor-nuclear factor I in the type 1 plasminogen activator inhibitor gene. Mol Cell Biol 1992; 12:1846–55.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Yang BS, Geddes TJ, Pogulis RJ, de Crombrugghe B, Freytag SO. Transcriptional suppression of cellular gene expression by c-Myc. Mol Cell Biol 1991; 11:2291–5.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Yang BS, Gilbert JD, Freytag SO. Overexpression of Myc suppresses CCAAT transcription factor/nuclear factor 1-dependent promoters in vivo. Mol Cell Biol 1993; 13:3093–102.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Schmidt A, Setoyama C, de Crombrugghe B. Regulation of a collagen gene promoter by the product of viral mos oncogene. Nature 1985; 314:286–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Slack JL, Parker MI, Robinson VR, Bornstein P. Regulation of collagen I gene expression by ras. Mol Cell Biol 1992; 12:4714–23.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Setoyama C, Liau G, de Crombrugghe B. Pleiotropic mutants of NIH 3T3 cells with altered regulation in the expression of both type I collagen and fibronectin. Cell 1985; 41:201–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Eizenberg O, Oren M. Reduced levels of alpha 1 (I) collagen mRNA in cells immortalized by mutant p53 or transformed by ras. Biochim Biophys Acta 1991; 1129:34–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Frankfort BJ, Gelman IH. Identification of novel cellular genes transcriptionally suppressed by v-src. Biochem Biophys Res Commun 1995; 206:916–26.PubMedCrossRefGoogle Scholar
  12. 12.
    Hampton LL, Worland PJ, Yu B, Thorgeirsson SS, Huggett AC. Expression of growth-related genes during tumor progression in v-raf-transformed rat liver epithelial cells. Cancer Res 1990; 50:7460–7.PubMedGoogle Scholar
  13. 13.
    Schuur ER, Kruse U, Iacovoni JS, Vogt PK. Nuclear factor 1 interferes with transformation by nuclear oncogenes. Cell Growth Diff 1995; 6:219–227.PubMedGoogle Scholar
  14. 14.
    Lim A, Greenspan DS, Smith BD. Expression of alpha 2 type I collagen in W8 cells increases cell adhesion and decreases colony formation in soft agar. Matrix Biol 1994; 14:21–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Wiseman RW, Montgomery JC, Hosoi J, et al. Identification of genes associated with tumor suppression in Syrian hamster embryo cells. Environ Health Perspect 1991; 93:105–9.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Eilers M, Picard D, Yamamoto KR, Bishop JM. Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 1989; 340:66–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Eilers M, Schirm S, Bishop JM. The MYC protein activates transcription of the alpha-prothymosin gene. EMBO J 1991; 10:133–41.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Eschenfeldt WH, Berger SL. The human prothymosin alpha gene is polymorphic and induced upon growth stimulation: evidence using a cloned cDNA. Proc Natl Acad Sci USA 1986; 83:9403–7.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Sburlati AR, Manrow RE, Berger SL. Prothymosin alpha antisense oligomers inhibit myeloma cell division. Proc Natl Acad Sci U S A 1991; 88:253–7.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Manrow RE, Sburlati AR, Hanover JA, Berger SL. Nuclear targeting of prothymosin alpha. J Biol Chem 1991; 266:3916–24.PubMedGoogle Scholar
  21. 21.
    Gaubatz S, Meichle A, Eilers M. An E-box element localized in the first intron mediates regulation of the prothymosin alpha gene by c-myc. Mol Cell Biol 1994; 14:3853–3862.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Meichle A, Philipp A, Eilers M. The functions of Myc proteins. Biochim Biophys Acta 1992; 1114:129–46.PubMedGoogle Scholar
  23. 23.
    Gaubatz S, Imho FA, Dosch R, et al. Transcriptional activation by Myc is under negative control by the transcription factor AP-2. EMBO J 1995; 14:1508–1519.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Tavtigian SV, Zabludoff SD, Wold BJ. Cloning of mid-G(1) serum response genes and identification of a subset regulated by conditional myc expression. Mol Biol Cell 1994; 5:375–388.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Benvenisty N, Leder A, Kuo A, Leder P. An embryonically expressed gene is a target for c-Myc regulation via the c-Myc-binding sequence. Genes Dev 1992; 6:2513–2523.PubMedCrossRefGoogle Scholar
  26. 26.
    Benvenisty N, Ornitz DM, Bennett GL, et al. Brain tumours and lymphomas in transgenic mice that carry HTLV-I LTR/c-myc and Ig/tax genes. Oncogene 1992; 7:2399–405.PubMedGoogle Scholar
  27. 27.
    Eden A, Simchen G, Benvenisty N. Two yeast homologs of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branched-chain amino acid aminotransferases. J Biol Chem 1996; 271:20242–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Schuldiner O, Eden A, Ben-Yosef T, Yanuka O, Simchen G, Benvenisty N. ECA39, a conserved gene regulated by c-Myc in mice, is involved in G1/S cell cycle regulation in yeast. Proc Natl Acad Sci U S A 1996; 93:7143–8.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Hutson SM, Bledsoe RK, Hall TR, Dawson PA. Cloning and expression of the mammalian cytosolic branched chain aminotransferase isoenzyme. J Biol Chem 1995; 270:30344–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Hubank M, Schatz DG. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res 1994; 22:5640–8.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Lisitsyn N, Lisitsyn N, Wigler M. Cloning the differences between two complex genomes. Science 1993; 259:946–51.PubMedCrossRefGoogle Scholar
  32. 32.
    Warburg O. On the origin of cancer cells. Science 1956; 123:309–314.PubMedCrossRefGoogle Scholar
  33. 33.
    Askew DS, Ashmun RA, Simmons BC, Cleveland JL. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 1991; 6:1915–22.PubMedGoogle Scholar
  34. 34.
    Auvinen M, Paasinen A, Andersson LC, Holtta E. Ornithine decarboxylase activity is critical for cell transformation. Nature 1992; 360:355–358.PubMedCrossRefGoogle Scholar
  35. 35.
    Bello-Fernandez C, Packham G, Cleveland JL. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci USA 1993; 90:7804–7808.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Pena A, Reddy CD, Wu S, et al. Regulation of human ornithine decarboxylase expression by the c-Myc.Max protein complex. J Biol Chem 1993; 268:27277–85.PubMedGoogle Scholar
  37. 37.
    Wagner AJ, Meyers C, Laimins LA, Hay N. c-Myc induces the expression and activity of ornithine decarboxylase. Cell Growth Differ 1993; 4:879–83.PubMedGoogle Scholar
  38. 38.
    Pena A, Wu S, Hickok NJ, Soprano DR, Soprano KJ. Regulation of human ornithine decarboxylase expression following prolonged quiescence: role for the c-Myc/Max protein complex. J Cell Physiol 1995; 162:234–45.PubMedCrossRefGoogle Scholar
  39. 39.
    Packham G, Bellofernandez C, Cleveland JL. Position and orientation independent transactivation by c-Myc. Cell Molec Biol Res 1994; 40:699–706, 1994.Google Scholar
  40. 40.
    Gregor PD, Sawadogo M, Roeder RG. The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer. Genes Dev 1990; 4:1730–1740.PubMedCrossRefGoogle Scholar
  41. 41.
    Beckmann H, Kadesch T. The leucine zipper of TFE3 dictates helix-loop-helix dimerization specificity. Genes Dev. 1991; 5:1057–1066.PubMedCrossRefGoogle Scholar
  42. 42.
    Fisher DE, Carr CS, Parent LA, Sharp PA. TFEB has DNA-binding and oligomerization properties of a unique helix-loop-helix/leucine-zipper family. Genes Dev 1991; 5:2342–52.PubMedCrossRefGoogle Scholar
  43. 43.
    Mai S, Jalava A. C-myc binds to 5’ flanking sequence motifs of the dihydrofolate reductase gene in cellular extracts — role in proliferation. Nuc Acids Res 1994; 22:2264–2273.CrossRefGoogle Scholar
  44. 44.
    Miltenberger RJ, Sukow KA, Farnham PJ. An E-box-mediated increase in cad transcription at the G1/S-phase boundary is suppressed by inhibitory c-Myc mutants. Mol Cell Biol 1995; 15:2527–2535.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Karn J, Watson J, Lowe A, Green S, Vedeckis W. Regulation of cell cycle duration by c-myc levels. Oncogene 1989; 4:773–787.PubMedGoogle Scholar
  46. 46.
    Prouty SM, Hanson KD, Boyle AL, et al. A cell culture model system for genetic analyses of the cell cycle by targeted homologous recombination. Oncogene 1993; 8:899–907.PubMedGoogle Scholar
  47. 47.
    Shichiri M, Hanson KD, Sedivy JM. Effects of c-myc expression on proliferation, quiescence, and the GO to Gl transition in nontransformed cells. Cell Growth Differ 1993; 4:93–104.PubMedGoogle Scholar
  48. 48.
    Hanson KD, Shichiri M, Follansbee MR, Sedivy JM. Effects of c-myc expression on cell cycle progression. Mol Cell Biol 1994; 14:5748–5755.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Jansen-Durr P, Meichle A, Steiner P, et al. Differential modulation of cyclin gene expression by MYC. Proc Natl Acad Sci USA 1993; 90:3685–3689.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Philipp A, Schneider A, Vasrik I, et al. Repression of cyclin D1 — a novel function of myc. Mol Cell Biol 1994; 14:4032–4043.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Daksis JI, Lu RY, Facchini LM, Marhin WW, Penn LJ. Myc induces cyclin Dl expression in the absence of de novo protein synthesis and links mitogen-stimulated signal transduction to the cell cycle. Oncogene 1994; 9:3635–45.PubMedGoogle Scholar
  52. 52.
    Rosenwald IB, Lazariskaratzas A, Sonenberg N, Schmidt EV. Elevated levels of cyclin Dl protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol 1993; 13:7358–7363.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Hoang AT, Cohen KJ, Barrett JF, Bergstrom DA, Dang CV. Participation of cyclin A in Myc-induced apoptosis. Proc Natl Acad Sci U S A 1994; 91:6875–6879.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Henglein B, Chenivesse X, Wang J, Eick D, Brechot C. Structure and cell cycle-regulated transcription of the human cyclin A gene. Proc Natl Acad Sci U S A 1994; 91:5490–4.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Yamamoto M, Yoshida M, Ono K, et al. Effect of tumor suppressors on cell cycle-regulatory genes: RB suppresses p34cdc2 expression and normal p53 suppresses cyclin A expression. Exp Cell Res 1994; 210:94–101.PubMedCrossRefGoogle Scholar
  56. 56.
    Yoshizumi M, Hsieh CM, Zhou F, et al. The ATF site mediates downregulation of the cyclin A gene during contact inhibition in vascular endothelial cells. Mol Cell Biol 1995; 6:3266–3272.Google Scholar
  57. 57.
    Desdouets C, Matesic G, Molina CA, et al. Cell cycle regulation of cyclin A gene expression by the cyclic AMP-responsive transcription factors CREB and CREM. Mol Cell Biol 1995; 6:3301–3309.Google Scholar
  58. 58.
    Nakamura T, Okuyama S, Okamoto S, Nakajima T, Sekiya S, Oda K. Down-regulation of the cyclin A promoter in differentiating human embryonal carcinoma cells is mediated by depletion of ATF-1 and ATF-2 in the complex at the ATF/CRE site. Exp Cell Res 1995; 216:422–430.PubMedCrossRefGoogle Scholar
  59. 59.
    Guadagno TM, Ohtsubo M, Roberts JM, Assoian RK. A link between cyclin A expression and adhesion-dependent cell cycle progression. Science 1993; 262:1572–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Guadagno TM, Assoian RK. G1/S control of anchorage-independent growth in the fibroblast cell cycle. J Cell Biol 1991; 115:1419–25.PubMedCrossRefGoogle Scholar
  61. 61.
    Han EK, Guadagno TM, Dalton SL, Assoian RK. A cell cycle and mutational analysis of anchorage-independent growth: cell adhesion and TGF-beta 1 control Gl/S transit specifically. J Cell Biol 1993; 122:461–71.PubMedCrossRefGoogle Scholar
  62. 62.
    Barrett JF, Lewis BC, Hoang AT, Alvarez JRJ, Dang CV. Cyclin A links c-Myc to adhesion-independent cell proliferation. J Biol Chem 1995; 270:15923–15925.PubMedCrossRefGoogle Scholar
  63. 63.
    Born TL, Frost JA, Schonthal A, Prendergast GC, Feramisco JR. C-myc cooperates with activated ras to induce the cdc2 promoter. Mol Cell Biol 1994; 14:5710–5718.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Kim YH, Buchholz MA, Chrest FJ, Nordin AA. Up-regulation of c-myc induces the gene expression of the murine homologues of p34(cdc2) and cyclin-dependent kinase-2 in T lymphocytes. J Immunol 1994; 152:4328–4335.PubMedGoogle Scholar
  65. 65.
    Galaktionov K, Chen X, Beach D. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 1996; 382:511–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Reisman D, Elkind N, Roy B, Beamon J, Rotter V. c-Myc trans-activate the p53 promoter through a required downstream CACGTG motif. Cell Growth Diff 1993; 4:57–65.PubMedGoogle Scholar
  67. 67.
    Roy B, Beamon J, Balint E, Reisman D. Transactivation of the human p53 tumor suppressor gene by c-Myc/Max contributes to elevated mutant p53 expression in some tumors. Mol Cell Biol 1994; 14:7805–15.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Rosenwald IB, Rhoads DB, Callanan LD, Isselbacher KJ, Schmidt EV. Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2 alpha in response to growth induction by c-myc. Proc Natl Acad Sci U S A 1993; 90:6175–8.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Blackwell TK, Huang J, Ma A, et al. Binding of myc proteins to canonical and noncanonical DNA sequences. Mol Cell Biol 1993; 13:5216–24.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Jones RM, Branda J, Johnston KA, et al. An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc. Mol Cell Biol 1996; 16:4754–64.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Chau CM, Evans MJ, Scarpulla RC. Nuclear respiratory factor 1 activation sites in genes encoding the gamma-subunit of ATP synthase, eukaryotic initiation factor 2 alpha, and tyrosine aminotransferase. Specific interaction of purified NRF-1 with multiple target genes. J Biol Chem 1992; 267:6999–7006.PubMedGoogle Scholar
  72. 72.
    Virbasius CA, Virbasius JV, Scarpulla RC. NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev 1993; 7:2431–45.PubMedCrossRefGoogle Scholar
  73. 73.
    Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci USA 1994; 91:1309–13.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • H. Shim
    • 1
  • B. C. Lewis
    • 1
  • C. Dolde
    • 1
  • Q. Li
    • 1
  • C.-S. Wu
    • 1
  • Y. S. Chun
    • 1
  • C. V. Dang
    • 1
  1. 1.Department of MedicineThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations