Regulated Expression and Function of the c-Myc Antagonist, Mad1, During a Molecular Switch from Proliferation to Differentiation

  • C. M. Cultraro
  • T. Bino
  • S. Segal
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 224)


Myc, Max, Mad, Mxi1 and mSin3 comprise a transcription factor superfamily in which the central protein is Max. All family members (except mSin3) must dimerize with Max through their respective helix loop helix (HLH) and leucine zipper (LZ) domains to cooperatively bind DNA in a sequence specific manner (reviewed in [15]). In contrast to the transactivating property of Myc/Max heterodimers [1, 18, 21], Max heterodimerization with Mad or Mxi1, followed by the tethering of mSin3, to target genes results in suppression of transcription [3, 33]. Although Mad/Max heterodimers have been shown to antagonize Myc function in transformation and the mechanism(s) involved require multiple protein-protein and protein-DNA interactions [4, 20, 23, 33], how Mad functions in differentiation is unknown.


Leucine Zipper Spontaneous Differentiation Murine Erythroleukemia Cell Hexamethylene Bisacetamide Mouse Erythroleukemia Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amin C, Wagner AJ, Hay N (1993) Sequence-specific transcriptional activation by Myc and repression by Max. Mol. Cell. Biol. 13:383–390PubMedCentralPubMedGoogle Scholar
  2. 2.
    Ayer DE, Eisenman RN (1993) A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation. Genes Dev. 7:2110–2119PubMedCrossRefGoogle Scholar
  3. 3.
    Ayer DE, Lawrence QA, Eisenman RN (1995) Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80:767–776PubMedCrossRefGoogle Scholar
  4. 4.
    Cerni C, Bousset K, Seelos C, Burkhardt H, Henriksson M, Luscher B (1995) Differential effects by Mad and Max on transformation by cellular and viral oncoproteins. Oncogene 11:587–596PubMedGoogle Scholar
  5. 5.
    Chen J, Willingham T, Margraf LR, Schreiber-Agus N, DePinho RA, Nisen PD (1995) Effects of the MYC ongcogene antagonist, MAD, on proliferation, cell cycling and the malignant phenotype of human brain tumor cells. Nature Medicine 1:638–643PubMedCrossRefGoogle Scholar
  6. 6.
    Chin L, Schreiber-Agus N, Pellicer I, Chen K, Lee H, Dudast M, Cordon-Cardo C, DePinho RA (1995) Contrasting roles for Myc and Mad proteins in cellular growth and differentiation. Proc. Natl. Acad. Sci. USA 92:8488–8492PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Cogliati T, Dunn BK, Bar-Ner M, Cultraro CM, Segal S (1993) Transfected wild-type and mutant max regulate cell growth and differentiation of murine erythroleukemia cells. Oncogene 8:1263–1268PubMedGoogle Scholar
  8. 8.
    Cultraro CM, Cogliati C, Hearing LE, Segal S (1996) Basic mutant Max reverses a c-Myc block to differentiation. One. Rpts. 3:141–146Google Scholar
  9. 9.
    Delgado MD, Lerga A, Canelles M, Gomez-Casares MT, Leon J (1995) Differential regulation of Max and role of c-Myc during erythroid and myelomonocytic differentiation of K562 cells. Oncogene 10:1659–1665PubMedGoogle Scholar
  10. 10.
    Dmitrovsky E, Kuehl WM, Hollis GF, Kirsch IR, Bender TP, Segal S (1986) Expression of a transfected human c-myc oncogene inhibits differentiation of a mouse erythroleukaemia cell line. Nature 322:748–750PubMedCrossRefGoogle Scholar
  11. 11.
    Dunn BK, Cogliati T, Cultraro CM, Bar-Ner M, Segal S (1994) Regulation of murine Max (Myn) parallels the regulation of c-Myc in differentiating murine erythroleukemia cells. Cell Growth Differ. 5:847–854PubMedGoogle Scholar
  12. 12.
    Edelhoff S, Ayer DE, Zervos AS, Steingrimsson E, Jenkins NA, Copeland NG, Eisenman RN, Brent R, Disteche CM (1994) Mapping of two genes encoding members of a distinct subfamily of MAX interacting proteins: MAD to human chromosome 2 and mouse chromosome 6, and MXI1 to human chromosome 10 and mouse chromosome 19. Oncogene 9:665–668PubMedGoogle Scholar
  13. 13.
    Einat M, Resnitzky D, Kimchi A (1985) Close link between reduction of c-myc expression by interferon and G0/G1 arrest. Nature 313:597–600PubMedCrossRefGoogle Scholar
  14. 14.
    Freytag SO (1988) Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in G0/G1. Mol. Cell. Biol. 8:1614–1624PubMedCentralPubMedGoogle Scholar
  15. 15.
    Henriksson M, Luscher G (1996) Proteins of the Myc network: essential regulators of cell growth and differentiation. Cancer Res. 68:110–182Google Scholar
  16. 16.
    Hurlin PJ, Foley KP, Ayer DE, Eisenman RN, Hanahan D, Arbeit JM (1995) Regulation of Myc and Mad during epidermal differentiation and HPV-associated tumorigenesis. Oncogene 11:2487–2501PubMedGoogle Scholar
  17. 17.
    Kaczmarek L, Hyland JK, Watt R, Rosenberg M, Baserga R (1985) Microinjected c-myc as a competence factor. Science 228:1313–1315PubMedCrossRefGoogle Scholar
  18. 18.
    Kato GJ, Barrett J, Villa-Garcia M, Dang CV (1990) An amino-terminal c-Myc domain required for neoplastic transformation activates transcription. Mol. Cell. Biol. 10:5914–5920PubMedCentralPubMedGoogle Scholar
  19. 19.
    Klinken PS, Holmes KL, Morse HC, Thorgeirsson SS (1988) Transcriptional and post-transcriptional regulation of c-myc and p53 during proliferation and differentiation of murine erythroleukemia cells treated with DFMO and DMSO. Exp. Cell. Res. 178:185–198PubMedCrossRefGoogle Scholar
  20. 20.
    Koskinen PJ, Ayer DE, Eisenman RN (1995) Repression of Myc-Ras cotransformation by Mad is mediated by multiple protein-protein interactions. Cell Growth Differ. 6:623–629PubMedGoogle Scholar
  21. 21.
    Kretzner L, Blackwood EM, Eisenman RN (1992) Myc and Max proteins possess distinct transcriptional activities. Nature 359:426–429PubMedCrossRefGoogle Scholar
  22. 22.
    Lachman HM, Skoultchi AI (1984) Expression of c-myc changes during differentiation of mouse erythroleukemia cells. Nature 310:592–594PubMedCrossRefGoogle Scholar
  23. 23.
    Lahoz EG, Xu L, Schreiber-Agus N, DePinho RA (1994) Supression of Myc, but not Ela, transformation activity by Max-associated proteins, Mad and Mxi1. Proc. Natl. Acad. Sci. USA 91:5503–5507PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Larsson L, Pettersson M, Oberg F, Nilsson K, Luscher B (1994) Expression of mad, mxi1, max and c-myc during induced differentiation of hematopoietic cells: opposite regulation of mad and c-myc. Oncogene 9:1247–1252PubMedGoogle Scholar
  25. 25.
    Lymboussaki A, Kaipainen A, Hatva E, Vastrik I, Jeskanen L, Jalkanen M, Werner S, Stenback R, Alitalo R (1996) Expression of Mad, an antagonist of Myc oncoprotein function, in differentiating keratinocytes during tumorigenesis of the skin. British J. Cancer 73:1347–1355CrossRefGoogle Scholar
  26. 26.
    Marcu KB, Bossone SA, Patel AJ (1992) myc function and regulation. Annu. Rev. Biochem. 61:809–860PubMedCrossRefGoogle Scholar
  27. 27.
    Marks PA, Richon VM, Kiyokawa J, Rifkind RA (1994) Inducing differentiation of transformed cells with hybrid polar compounds: A cell cycle-dependent process. Proc. Natl. Acad. Sci. USA 91:10251–10254PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Marks PA, Rifkind RA (1978) Erythroleukemic differentiation. Annu. Rev. Biochem. 47:419–448PubMedCrossRefGoogle Scholar
  29. 29.
    Mechti N, Piechaxzyk M, Blanchard J, Marty L, Bonnieu A, Jeanteur P, Lebleu B (1986) Transcriptional and post-transcriptional regulation of c-myc expression during differentiation of murine erythroleukemia Friend cells. Nucleic Acids Res. 14:9653–9666PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Nepveu A, Marcu KB, Skoultchi AI, Lachman HM (1987) Contributions of transcriptional and post-transcriptional mechanisms to the regulation of c-myc expression in mouse erythroleukemia cells. Genes Dev. 1:938–945PubMedCrossRefGoogle Scholar
  31. 31.
    Prochownik EV, Kukowska J, Rodgers C (1988) c-myc antisense transcripts accelerate differentiation and inhibit G1 progression in murine erythroleukemia cells. Mol. Cell. Biol. 8:3683–3695PubMedCentralPubMedGoogle Scholar
  32. 32.
    Roussel MF, Ashmun RA, Sherr CJ, Eisenman RN, Ayer DE (1996) Inhibition of cell proliferation by the Madl transcriptional repressor. Mol. Cell. Biol. 16:2796–2801PubMedCentralPubMedGoogle Scholar
  33. 33.
    Schreiber-Agus N, Chin L, Chen K, Torres R, Rao G, Guida P, Skoultchi AI, DePinho RA (1995) An amino-terminal domain of Mxi1 mediates Anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor Sin3. Cell 80:777–786PubMedCrossRefGoogle Scholar
  34. 34.
    Shapiro DN, Valentine V, Eagle L, Yin X, Morris SW, Prochownik EV (1994) Assignment of the human MAD and MXI1 genes to chromosomes 2p12-p13 and 10q24-25. Genomics 23:282–285PubMedCrossRefGoogle Scholar
  35. 35.
    Spotts GD, Hann SR (1990) Enhanced translation and increased turnover of c-myc proteins occur during differentiation of murine erythroleukemia cells. Mol. Cell. Biol. 10:3952–3964PubMedCentralPubMedGoogle Scholar
  36. 36.
    Vastrik I, Kaipainen A, Penttila T, Lymboussakis A, Alitalo R, Parvinen M, Alitalo K (1995) Expression of the mad gene during cell differentiation in vivo and its inhibition of cell growth in vitro. J. Cell Biol. 128:1197–1208PubMedCrossRefGoogle Scholar
  37. 37.
    Zervos AS, Gyuris J, Brent R (1993) Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 72:223–232PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • C. M. Cultraro
    • 1
  • T. Bino
    • 1
  • S. Segal
    • 1
    • 2
  1. 1.NCI-Navy Medical Oncology Branch, National Cancer Institute, NIHUniversity of Health SciencesBethesdaUSA
  2. 2.Uniformed ServicesUniversity of Health SciencesBethesdaUSA

Personalised recommendations