Advertisement

The c-myc Story: Where we’ve been, Where we seem to be Going

  • M. Potter
  • K. B. Marcu
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 224)

Abstract

The history of c-myc spans the panorama of discovery and technological development of our understanding of oncogenes. It begins indirectly in the early part of the century with the observations of Wilhelm Eilermann and Olaf Bang in 1908–9 who demonstrated that erythroleukemias in chickens could be transmitted with cell free filtrates. At the time there was prevailing doubt about the neoplastic nature of this leukemic process; even Ellermann and Bang thought it “represented an infection” (see [1]). The discovery was not heralded as a great conceptual breakthrough; but it nonetheless left a lasting impression. Two years later Peyton Rous, then a young investigator at the Rockefeller Institute in New York, successfully transmitted a fibrosarcoma arising in a Plymouth Rock chicken with cell free filtrates. Although there was greater acceptance of the neoplastic nature of this sarcoma, the result presented a perplexing problem because no one could explain how a tumor of the same histological type could be transmitted by a (cell free filtrate) virus. Within a year continued reports of other tumors in chickens that were transmissable by cell free extracts were described by Rous himself and Fujinami. Eventually, this enigma and the demands of WWI occasioned Rous himself to abandon this work. The first avian tumor that was found to contain what was to be later identified as v-myc was the Murray-Begg endothelioma known as MH-2 [2,3]. The virus ultimately isolated from this tumor contained both v-myc and v-raf-1 [4].

Keywords

Burkitt Lymphoma Cell Free Filtrate Cellular Nucleic Acid Binding Protein Immunoglobulin Enhancer Lymphoid Leukosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shimkin MB. (1980) Classics of experimental oncology. NIH Publication No. 80–2150. NIH Pub 80–2150:328–360Google Scholar
  2. 2.
    Begg AM. (1927) A filterable endothelioma of the fowl. Lancet:912–915Google Scholar
  3. 3.
    Graf T, Beug H. (1978) Avian leukemia viruses: interaction with their target cells in vivo and in vitro. Biochim Biophys Acta 516:269–299PubMedGoogle Scholar
  4. 4.
    Sutrave P, Bonner TI, Rapp UR, Jansen HW, Patschinsky T, Bister K. (1984) Nucleotide sequence of avian retroviral oncogene v-mil: homologue of murine retroviral oncogene v-raf. Nature 309:85–88PubMedCrossRefGoogle Scholar
  5. 5.
    Bister K, Duesberg PH. (1979) Genetic structure of avian acute leukemia viruses. Cold Spring Harbor Symp Quant Biol 44:801–822CrossRefGoogle Scholar
  6. 6.
    Mladenov Z, Heine U, Beard D, Beard JW. (1967) Strain MC29 avian leukosis virus. Myelocytoma, endothelioma, and renal growths: pathomorphological and ultrastructural aspects. J Natl Cancer Inst 38:251–285PubMedGoogle Scholar
  7. 7.
    Duesberg PH, Vogt PK. (1979) Avian acute leukemia viruses MC29 and MH2 share specific RNA sequences: evidence for a second class of transforming genes. Proc Natl Acad Sci U S A 76:1633–1637PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Hay ward WS, Neel BG, Astrin S. (1981) Activation of a cellular one gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290:475–480CrossRefGoogle Scholar
  9. 9.
    Cooper MD, Payne LN, Dent PB, Burmester BR, Good RA. (1968) Pathogenesis of avian lymphoid leukosis. I. Histogenesis. J Natl Cancer Inst 41:373–378PubMedGoogle Scholar
  10. 10.
    Peterson RDA, Burmester BR, Fredrickson TN, Purchase HG, Good RA. (1964) Effect of bursectomy and thymectomy on the development of visceral lymphomatosis in the chicken. J Natl Cancer Inst 32:1343–1354PubMedGoogle Scholar
  11. 11.
    Neel BG, Hayward WS, Robinson HL, Fang J, Astrin SM. (1981) Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: oncogensis by promoter insertion. Cell 23:323–334PubMedCrossRefGoogle Scholar
  12. 12.
    Payne GS, Bishop JM, Varmus HE. (1981) Multiple arrangements of viral DNA and an activated host oncogene (c-myc) in bursal lymphomas. Nature 295:209–214CrossRefGoogle Scholar
  13. 13.
    Zech L, Haglund U, Nilsson K, Klein G. (1976) Characteristic chromosomal abnormalities in biopsies and lymphoid cell lines from patients with Burkitt and non-Burkitt lymphomas. Int.J.Cancer 17:47–56PubMedCrossRefGoogle Scholar
  14. 14.
    Ohno S, Babonits M, Wiener F, Spira J, Klein G, Potter M. (1979) Nonrandom chromosome changes involving the Ig gene-carrying chromosomes 12 and 6 in pristane-induced mouse plasmacytomas. Cell 18:1001–1007PubMedCrossRefGoogle Scholar
  15. 15.
    Yosida MC, Moriwaki K. (1975) Specific marker chromosomes involving a translocation (12;15) in a mouse myeloma. Proc Jpn Acad 51:588Google Scholar
  16. 16.
    Hengartner H, Meo T, Muller E. (1978) Assignment of genes for immunoglobulin kappa and heavy chains to chromosomes 6 and 12 in mouse. Proc Natl Acad Sci U S A 75:4494–4498PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Harris LJ, Lang RB, Marcu KB. (1982) Non-immunoglobulin-associated DNA rearrangements in mouse plasmacytomas. Proc Natl Acad Sci U S A 79:4175–4179PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Adams JM, Gerondakis S, Webb E, Mitchell J, Bernard O, Cory S. (1982) Transcriptionally active DNA region that rearranges frequently in murine lymphoid tumors. Proc Natl Acad Sci U S A 79:6966–6970PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Calame K, Kim S, Lalley P, Hill R, Davis M, Hood L. (1982) Molecular cloning of translocations involving chromosome 15 and the immunoglobulin C-alpha gene from chromosome 12 in two murine plasmacytomas. Proc Natl Acad Sci U S A 79:6994–6998PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Harris LJ, D’Eustachio P, Ruddle FH, Marcu KB. (1982) DNA sequence associated with chromosome translocations in mouse plasmacytomas. Proc Natl Acad Sci USA 79:6622–6626PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. (1982) Human c-myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79:7824–7827PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Shen-Ong GL, Keath EJ, Piccoli SP, Cole MD. (1982) Novel myc oncogene RNA from abortive immunoglobulin-gene recombination in mouse plasmacytomas. Cell 31:443–452PubMedCrossRefGoogle Scholar
  23. 23.
    Lenoir GM, Taub R. (1987) Chromosomal translocations and oncogenes in Burkitt’s lymphoma. In: Golman JM, Harnden DH (eds) Genetic rearrangements in leukaemia and lymphoma. Churchill-Livingstone, New York, pp 152–172Google Scholar
  24. 24.
    Land H, Parada LF, Weinberg RA. (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602PubMedCrossRefGoogle Scholar
  25. 25.
    Dormer P, Greiser-Wilke X, Moelling K. (1982) Nuclear localization and DNA binding of the transforming gene product of avian myelocytomatosis virus. Nature 296:262–265CrossRefGoogle Scholar
  26. 26.
    Persson H, Leder P. (1984) Nuclear localization and DNA binding properties expressed by the human c-myc oncogene. Science 225:718–721PubMedCrossRefGoogle Scholar
  27. 27.
    Murre C, McCaw PS, Baltimore D. (1989) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783PubMedCrossRefGoogle Scholar
  28. 28.
    Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H. (1990) Sequence-specific DNA binding by the c-Myc protein. Science 250:1149–1151PubMedCrossRefGoogle Scholar
  29. 29.
    Blackwood EM, Eisenman RN. (1991) Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251:1211–1217PubMedCrossRefGoogle Scholar
  30. 30.
    Stewart TA, Pattengale PK, Leder P. (1984) Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38:627–637PubMedCrossRefGoogle Scholar
  31. 31.
    Pattengale P, Leder A, Kuo A, Stewart T, Leder P. (1986) Lymphohematopoietic and other malignant neoplasms occurring spontaneously in transgenic mice carrying and expressing MTV/myc fusion genes. Curr Top Microbiol Immunol 132:9–16PubMedGoogle Scholar
  32. 32.
    Leder A, Pattengale PK, Kuo A, Stewart TA, Leder P. (1986) Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell 45:485–495PubMedCrossRefGoogle Scholar
  33. 33.
    Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD, Brinster RL. (1985) The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318:533–538PubMedCrossRefGoogle Scholar
  34. 34.
    Davis AC, Wims M, Spotts GD, Hann SR, Bradley A. (1993) A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Devel. 7:671–682PubMedCrossRefGoogle Scholar
  35. 35.
    Shichiri M, Hanson KD, Sedivy JM. (1993) Effects of c-myc expression on proliferation, quiescence, and the GO to Gl transition in nontransformed cells. Cell Growth Difieren 4:93–104Google Scholar
  36. 36.
    Bentley DL, Groudine M. (1986) A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature 321:702–706PubMedCrossRefGoogle Scholar
  37. 37.
    Eick D, Bornkamm GW. (1986) Transcriptional arrest within the first exon is a fast control mechanism in c-myc gene expression. Nucleic Acids Res 14:8331–8346PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Nepveu A, Marcu KB. (1986) Intragenic pausing and anti-sense transcription within the murine c-myc locus. EMBO J. 5:2859–2865PubMedCentralPubMedGoogle Scholar
  39. 39.
    Strobl LJ, Eick D. (1992) Hold back of RNA polymerase II at the transcription start site mediates down-regulation of c-myc in vivo. EMBO J. 11:3307–3314PubMedCentralPubMedGoogle Scholar
  40. 40.
    Krumm A, Meulia T, Brunvand M, Groudine M. (1992) The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Genes Dev 6:2201–2213PubMedCrossRefGoogle Scholar
  41. 41.
    Krumm A, Hickey LB, Groudine M. (1995) Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation. Genes Dev 9:559–572PubMedCrossRefGoogle Scholar
  42. 42.
    Wolf DA, Strobl LJ, Pullner A, Eick D. (1995) Variable pause positions of RNA polymerase II lie proximal to the c-myc promoter irrespective of transcriptional activity. Nucleic Acids Res 23:3373–3379PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Marcu KB, Bossone SA, Patel AJ. (1992) myc function and regulation. Annu Rev Biochem 61:809–860PubMedCrossRefGoogle Scholar
  44. 44.
    Henriksson M, Luscher B. (1996) Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res 68:109–182PubMedCrossRefGoogle Scholar
  45. 45.
    Pendergast GC, Ziff EB. (1992) A new bind for Myc. Trends Genet. 8:91–96CrossRefGoogle Scholar
  46. 46.
    Matheswaran S, Lee H, Sonenshein GE. (1994) Intracellular association of the protein product of the c-myc oncogene with the TATA-binding protein. Mol.Cell.Biol. 14:1147–1152Google Scholar
  47. 47.
    Hateboer G, Timmers HTM, Rustgi AK, Billaud M, van’t Veer LJ, Bernards R. (1993) TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein. Proc Natl Acad Sci USA 90:8489–8493PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    McEwan IJ, Dahlman-Wright K, Ford J, Wright APH. (1996) Functional interaction of the c-Myc transactivation domain with the TATA binding protein: evidence for an induced fit model of transactivation domain folding. Biochemistry 35:9584–9593PubMedCrossRefGoogle Scholar
  49. 49.
    Roy AL, Carruthers C, Gutjahr T, Roeder RG. (1993) Direct role for Myc in transcription initiation mediated by interactions with TFII-I. Nature 365:359–361PubMedCrossRefGoogle Scholar
  50. 50.
    Shrivastava A, Saleque S, Kalpana GV, Artandi S, Goff SP, Calame K. (1993) Inhibition of transcriptional regulator Yin-Yang-1 by association with c-Myc. Science 262:1889–1892PubMedCrossRefGoogle Scholar
  51. 51.
    La Rocca SA, Crouch DH, Gillespie DA. (1994) c-Myc inhibits myogenic differentiation and myoD expression by a mechanism which can be dissociated from cell transformation. Oncogene 9:3499–3508PubMedGoogle Scholar
  52. 52.
    Gaubatz S, Imhof A, Dosch R, Werner O, Mitchell P, Buettner R, Eilers M. (1995) Transcriptional activation by Myc is under negative control by the transcription factor AP-2. EMBO J. 14:1508–1519PubMedCentralPubMedGoogle Scholar
  53. 53.
    Alexandrova N, Niklinski J, Bliskovsky V, Otterson GA, Blake M, Kaye FJ, Zajac-Kaye M. (1995) The N-terminal domain of c-Myc associates with alpha-tubulin and microtubules in vivo and in vitro. Mol.Cell.Biol. 15:5188–5195PubMedCentralPubMedGoogle Scholar
  54. 54.
    Sakamuro D, Elliott KJ, Wechsler-Reya R, Prendergast GC. (1996) BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nature Genet 14:69–77PubMedCrossRefGoogle Scholar
  55. 55.
    Adnane J, Robbins PD. (1995) The retinoblastoma susceptibility gene product regulates Myc-mediated transcription. Oncogene 10:381–387PubMedGoogle Scholar
  56. 56.
    Beijersbergen RL, Hijmans EM, Zhu L, Bernards R. (1994) Interaction of c-Myc with the pRb-related protein p107 results in inhibition of c-Myc-mediated transactivation. EMBO J. 13:4080–4086PubMedCentralPubMedGoogle Scholar
  57. 57.
    Gu W, Bhatia K, Magrath IT, Dang CV, Dalla-Favera R. (1994) Binding and suppression of the Myc transcriptional activation domain by p107. Science 264:251–254PubMedCrossRefGoogle Scholar
  58. 58.
    Hurlin PJ, Queva C, Koskinen PJ, Steingrimsson E, Ayer DE, Copeland NG, Jenkins NA, Eisenman RN. (1995) Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. EMBO J. 14:5646–5659PubMedCentralPubMedGoogle Scholar
  59. 59.
    Ayer DE, Lawrence QA, Eisenman RN. (1995) Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80:767–776PubMedCrossRefGoogle Scholar
  60. 60.
    Schreiber-Agus N, Chin L, Chen K, Torres R, Rao G, Guida P, Skoulchi AI, DePinho RA. (1995) An amino-terminal domain of Mxil mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80:777–786PubMedCrossRefGoogle Scholar
  61. 61.
    Hay N, Takimoto M, Bishop JM. (1989) A FOS protein is present in a complex that binds a negative regulator of MYC. Genes Dev 3:293–303PubMedCrossRefGoogle Scholar
  62. 62.
    Takimoto M, Quinn JP, Farina AR, Staudt LM, Levens D. (1989) fos/jun and octamer-binding protein interact with a common site in a negative element of the human c-myc gene. J Biol Chem 264:8992–8999PubMedGoogle Scholar
  63. 63.
    Kessler DJ, Duyao MP, Spicer DB, Sonenshein GE. (1992) NF-kappa B-like factors mediate interleukin 1 induction of c-myc gene transcription in fibroblasts. J Exp Med 176:787–792PubMedCrossRefGoogle Scholar
  64. 64.
    Hamel PA, Gill RM, Phillips RA, Gallie BL. (1992) Transcriptional repression of the E2–containing promoters EIIaE, c-myc, and RB1 by the product of the RB1 gene. Mol Cell Biol 12:3431–3438PubMedCentralPubMedGoogle Scholar
  65. 65.
    Cogswell JP, Cogswell PC, Kuehl WM, Cuddihy AM, Bender TM, Engelke U, Marcu KB, Ting JP. (1993) Mechanism of c-myc regulation by c-Myb in different cell lineages. Mol Cell Biol 13:2858–2869PubMedCentralPubMedGoogle Scholar
  66. 66.
    Oswald F, Lovec H, Moroy T, Lipp M. (1994) E2F-dependent regulation of human MYC: trans-activation by cyclins D1 and A overrides tumour suppressor protein functions. Oncogene 9:2029–2036PubMedGoogle Scholar
  67. 67.
    Wolf DA, Hermeking H, Albert T, Herzinger T, Kind P, Eick D. (1995) A complex between E2F and the pRb-related protein p130 is specifically targeted by the simian virus 40 large T antigen during cell transformation. Oncogene 10:2067–2078PubMedGoogle Scholar
  68. 68.
    Wong KK, Zou X, Merrell KT, Patel AJ, Marcu KB, Chellappan S, Calame K. (1995) v-Abl activates c-myc transcription through the E2F site. Mol Cell Biol 15:6535–6544PubMedCentralPubMedGoogle Scholar
  69. 69.
    Lee H, Arsura M, Wu M, Duyao M, Buckler AJ, Sonenshein GE. (1995) Role of Rel-related factors in control of c-myc gene transcription in receptor-mediated apoptosis of the murine B cell WEHI 231 line. J Exp Med 181:1169–1177PubMedCrossRefGoogle Scholar
  70. 70.
    Herzinger T, Wolf DA, Eick D, Kind P. (1995) The pRb-related protein pl30 is a possible effector of transforming growth factor beta 1 induced cell cycle arrest in keratinocytes. Oncogene 10:2079–2084PubMedGoogle Scholar
  71. 71.
    Hiebert SW, Lipp M, Nevins JR. (1989) E1A-dependent trans-activation of the human MYC promoter is mediated by the E2F factor. Proc Natl Acad Sci U S A 86:3594–3598PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Bossone SA, Asselin C, Patel AJ, Marcu KB. (1992) MAZ, a zinc finger protein, binds to c-MYC and C2 gene sequences regulating transcriptional initiation and termination. Proc Natl Acad Sci U S A 89:7452–7456PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    DesJardins E, Hay N. (1993) Repeated CT elements bound by zinc finger proteins control the absolute and relative activities of the two principal human c-myc promoters. Mol Cell Biol 13:5710–5724PubMedCentralPubMedGoogle Scholar
  74. 74.
    Riggs KJ, Saleque S, Wong KK, Merrell KT, Lee JS, Shi Y, Calame K. (1993) Yin-yang 1 activates the c-myc promoter. Mol Cell Biol 13:7487–7495PubMedCentralPubMedGoogle Scholar
  75. 75.
    Numoto M, Niwa O, Kaplan J, Wong KK, Merrell K, Kamiya K, Yanagihara K, Calame K. (1993) Transcriptional repressor ZF5 identifies a new conserved domain in zinc finger proteins. Nucleic Acids Res 21:3767–3775PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Roussel MF, Davis JN, Cleveland JL, Ghysdael J, Hiebert SW. (1994) Dual control of myc expression through a single DNA binding site targeted by ets family proteins and E2F-1. Oncogene 9:405–415PubMedGoogle Scholar
  77. 77.
    Dufort D, Nepveu A. (1994) The human cut homeodomain protein represses transcription from the c-myc promoter. Mol Cell Biol 14:4251–4257PubMedCentralPubMedGoogle Scholar
  78. 78.
    Berberich SJ, Postei EH. (1995) PuF/NM23–H2/NDPK-B transactivates a human c-myc promoter-CAT gene via a functional nuclease hypersensitive element. Oncogene 10:2343–2347PubMedGoogle Scholar
  79. 79.
    Duncan R, Bazar L, Michelotti G, Tomonaga T, Krutzsch H, Avigan M, Levens D. (1994) A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev 8:465–480PubMedCrossRefGoogle Scholar
  80. 80.
    Negishi Y, Nishita Y, Saegusa Y, Kakizaki I, Galli I, Kihara F, Tamai K, Miyajima N, Iguchi-Ariga SM, Ariga H. (1994) Identification and cDNA cloning of single-stranded DNA binding proteins that interact with the region upstream of the human c-myc gene. Oncogene 9:1133–1143PubMedGoogle Scholar
  81. 81.
    Michelotti EF, Tomonaga T, Krutzsch H, Levens D. (1995) Cellular nucleic acid binding protein regulates the CT element of the human c-myc protooncogene. J Biol Chem 270:9494–9499PubMedCrossRefGoogle Scholar
  82. 82.
    Michelotti GA, Michelotti EF, Pullner A, Duncan RC, Eick D, Levens D. (1996) Multiple single-stranded eis elements are associated with activated chromatin of the human c-myc gene in vivo. Mol Cell Biol 16:2656–2669PubMedCentralPubMedGoogle Scholar
  83. 83.
    Filippova GN, Fagerlie S, Klenova EM, Myers C, Dehner Y, Goodwin G, Neiman PE, Collins SJ, Lobanenkov VV. (1996) An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol Cell Biol 16:2802–2813PubMedCentralPubMedGoogle Scholar
  84. 84.
    Mautner J, Joos S, Werner T, Eick D, Bornkamm GW, Polack A. (1995) Identification of two enhancer elements downstream of the human c-myc gene. Nucleic Acids Res 23:72–80PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Mautner J, Behrends U, Hortnagel K, Brielmeier M, Hammerschmidt W, Strobl L, Bornkamm GW, Polack A. (1996) c-myc expression is activated by the immunoglobulin kappa-enhancers from a distance of at least 30 kb but not by elements located within 50 kb of the unaltered c-myc locus in vivo. Oncogene 12:1299–1307PubMedGoogle Scholar
  86. 86.
    Joos S, Haluska FG, Falk MH, Henglein B, Hameister H, Croce CM, Bornkamm GW. (1992) Mapping chromosomal breakpoints of Burkitt’s t(8;14) translocations far upstream of c-myc. Cancer Res 52:6547–6552PubMedGoogle Scholar
  87. 87.
    Zeidler R, Joos S, Delecluse HJ, Klobeck G, Vuillaume M, Lenoir GM, Bornkamm GW, Lipp M. (1994) Breakpoints of Burkitt’s lymphoma t(8;22) translocations map within a distance of 300 kb downstream of MYC. Genes Chromosomes Cancer 9:282–287PubMedCrossRefGoogle Scholar
  88. 88.
    Pietenpol JA, Stein RW, Moran E, Yaciuk P, Schlegel R, Lyons RM, Pittelkow MR, Munger K, Howley PM, Moses HL. (1990) TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61:777–785PubMedCrossRefGoogle Scholar
  89. 89.
    Roussel MF, Cleveland JL, Shurtleff SA, Sherr CJ. (1991) Myc rescue of a mutant CSF-1 receptor impaired in mitogenic signalling. Nature 353:361–363PubMedCrossRefGoogle Scholar
  90. 90.
    Duyao MP, Kessler DJ, Spicer DB, Bartholomew C, Cleveland JL, Siekevitz M, Sonenshein GE. (1992) Transactivation of the c-myc promoter by human T cell leukemia virus type 1 tax is mediated by NF kappa B. J Biol Chem 267:16288–16291PubMedGoogle Scholar
  91. 91.
    Strobl LJ, Kohlhuber F, Mautner J, Polack A, Eick D. (1993) Absence of a paused transcription complex from the c-myc P2 promoter of the translocation chromosome in Burkitt’s lymphoma cells: implication for the c-myc P1/P2 promoter shift. Oncogene 8:1437–1447PubMedGoogle Scholar
  92. 92.
    Madisen L, Groudine M. (1994) Identification of a locus control region in the immunoglobulin heavy-chain locus that deregulates c-myc expression in plasmacytoma and Burkitt’s lymphoma cells. Genes Dev 8:2212–2226PubMedCrossRefGoogle Scholar
  93. 93.
    Hortnagel K, Mautner J, Strobl LJ, Wolf DA, Christoph B, Geltinger C, Polack A. (1995) The role of immunoglobulin kappa elements in c-myc activation. Oncogene 10:1393–1401PubMedGoogle Scholar
  94. 94.
    Lavenu A, Pournin S, Babinet C, Morello D. (1994) The cis-acting elements known to regulate c-myc expression ex vivo are not sufficient for correct transcription in vivo. Oncogene 9:527–536PubMedGoogle Scholar
  95. 95.
    Perm LJZ, Brooks MW, Laufer EM, Littlewood TD, Morgenstern JP, Evan GI, Lee WMF, Land H. (1990) Domains of human c-myc protein required for autosuppression and cooperation with ras oncogenes are overlapping. Mol.Cell.Biol. 10:961–966Google Scholar
  96. 96.
    DePinho RA, Schreiber-Agus N, Alt FW. (1991) myc family oncogenes in the development of normal and neoplastic cells. Adv Cancer Res 57:1–46PubMedCrossRefGoogle Scholar
  97. 97.
    Facchini LM, Chen S, Marhin WW, Lear JN, Penn LZ. (1997) The Myc negative autoregulation mechanism requires Myc-Max association and involves the c-myc P2 minimal promoter. Mol.Cell.Biol. 17:100–114PubMedCentralPubMedGoogle Scholar
  98. 98.
    Spencer CA, Groudine M. (1991) Control of c-myc regulation in normal and neoplastic cells. Adv Cancer Res 56:1–48PubMedCrossRefGoogle Scholar
  99. 99.
    Dani C, Blanchard JM, Piechaczyk M, El Sabouty S, Marty L, Jeanteur P. (1984) Extreme instability of myc mRNA in normal and transformed human cells. Proc Natl Acad Sci U S A 81:7046–7050PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Yeilding NM, Rehman MT, Lee WMF. (1996) Identification of sequences in c-myc mRNA that regulate its steady-state levels. Mol.Cell.Biol. 16:3511–3522PubMedCentralPubMedGoogle Scholar
  101. 101.
    Waters CM, Littlewood TD, Hancock DC, Moore JP, Evan GI. (1991) c-myc protein expression in untransformed fibroblasts. Oncogene 6:797–805PubMedGoogle Scholar
  102. 102.
    Hann SR, Eisenman RN. (1984) Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol Cell Biol 4:2486–2497PubMedCentralPubMedGoogle Scholar
  103. 103.
    Galaktionov K, Chen X, Beach D. (1996) Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382:511–517PubMedCrossRefGoogle Scholar
  104. 104.
    Galaktionov K, Lee AK, Eckstein J, Draetta G, Meckler J, Loda M, Beach D. (1995) CDC25 phosphatases as potential human oncogenes. Science 269:1575–1577PubMedCrossRefGoogle Scholar
  105. 105.
    Lee LA, Dolde C, Barrett J, Wu CS, Dang CV. (1996) A link between c-Myc-mediated transcriptional repression and neoplastic transformation. J.Clin.Invest. 97:1687–1695PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Li LH, Nerlov C, Prendergast G, MacGregor D, Ziff EB. (1994) c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J. 13:4070–4079PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. Potter
    • 1
  • K. B. Marcu
    • 2
  1. 1.National Cancer InstituteNIHBethesdaUSA
  2. 2.State University of New York at Stony BrookStony BrookUSA

Personalised recommendations