Skip to main content

A Transonic Panel Method for Helicopter Flows

  • Conference paper
  • 166 Accesses

Abstract

Since the early 1960’s, boundary element methods1 have been an indispensable tool for analyzing the flow field and shaping the surfaces surrounded by flows. After Hess & Smith [17] introduced the panel methods into fluid mechanics, many different methods have been developed [31, 32, 41]; surveys of the existing methods are given by Wagner [45, 46] Hoeijmakers [18] and Hess [16]. With the increasing use of computers, lifting surface theories [43, 44], of which some had been very sophisticated until that time, increasingly lost importance. The scope of application for boundary element methods, however, was extended to include supersonic and unsteady flows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behr, R., Wagner, S. (1988): Ein nichtlineares Wirbelgitterverfahren zur Berechnung von Interferenzeffekten zwischen freien Wirbelschichten und Tragflügeln. 6. DGLR-Fachsymposium über Strömung mit Ablösung. DGLRBericht 88-5, pp. 169 - 180, Braunschweig

    Google Scholar 

  2. Behr, R., Wagner, S. (1988): A Low Order Panel Method for the Calculation of Vortex Sheet Roll-Up and Wing-Vortex Interaction. In: Brebbia, C. (ed.) Proceedings Boundary Elements X, Vol. I. Springer, pp. 259 - 274, Southampton UK

    Google Scholar 

  3. Behr, R., Wagner, S. (1989): A Vortex-Lattice Method for the Calculation of Vortex Sheet Roll-Up and Wing-Vortex Interaction. In: Hirschel, E.H. (ed.) Notes on Numerical Fluid Mechanics, Vol. 25: Finite Approximations in Fluid Mechanics II. Vieweg, Braunschweig Wiesbaden, pp. 1 – 14

    Google Scholar 

  4. Behr, R., Wagner, S. (1990): Anwendung eines Wirbelgitterverfahrens auf die Umstromung schlanker Deltaflügel mit Ablösung. DGLR-Fachsymposium über Strömungen mit Ablösung. DGLR-Bericht 90-06, pp. 166 - 170, RWTH Aachen

    Google Scholar 

  5. Behr, R., Wagner, S. (1993): Entwicklung eines Panelverfahrens zur Berechnung der subsonischen Umströmung von endlich dicken Tragflügeln mit Strömungsablosung und freier Wirbelschleppe in einer Flugzeugkonfiguration. Institutsbericht 91/2, Universität der Bundeswehr München

    Google Scholar 

  6. Behr, R., Wagner, S. (1990): Application of a Low Order Panel Method to Slender Delta-Wings at High Angles of Attack. Symposium of the International Association for Boundary Element Methods (IABEM 90), Rome. In: Morino, L., Piva, R. (eds.) Boundary Integral Methods — Theory and Application. Springer 1991, pp. 105 - 114

    Google Scholar 

  7. Caradonna, F.X., Tung, C. (1980): Experimental and Analytical Studies of a Model Helicopter Rotor in Hover. Sixth European Rotorcraft and Powered Lift Aircraft Forum, pp. 25-1 - 25-19, Bristol, England

    Google Scholar 

  8. Egolf, A. (1988): Helicopter Free Wake Prediction of Complex Wake Structures under Blade-Vortex Interaction Operating Conditions

    Google Scholar 

  9. Gennaretti, M., Morino, L. (1992): A Boundary Element Method for the Potential, Compressible Aerodynamics of Bodies in Arbitrary Motion. Aeronautical Journal Vol. 96(951), pp. 15 – 19

    Google Scholar 

  10. Hackbusch, W. (1989): Integralgleichungen. Teubner, Stuttgart

    MATH  Google Scholar 

  11. Hackbusch, W., Nowak, Z. (1989): On the Fast Matrix Multiplication in the Boundary Element Method by Panel Clustering. Numerische Mathematik 54, 463 – 491

    Article  MathSciNet  MATH  Google Scholar 

  12. Hertel, J., Krämer, E., Wagner, S. (1988): Berechnung des Stromungsfeldes eines mehrblättrigen Hubschrauberrotors mit Hilfe eines Euler-Verfahrens unter Einbeziehung des Nachlaufes. 6. DGLR-Fach-Symposium über Strömungen mit Ablosung. DGLR-Bericht 88-5, pp. 243 - 254, Braunschweig

    Google Scholar 

  13. Hertel, J., Krämer, E., Wagner, S. (1988): Euler Solutions for Steady Flow of a Helicopter Rotor. 2. International Conference on Rotorcraft Basic Research of the American Helicopter Society. Proceedings, pp. H-l - H-15, Maryland

    Google Scholar 

  14. Hertel, J., Krämer, E., Wagner, S. (1990): Complete Euler-Solution for a Rotor in Hover and a Propeller in Forward Flight. 16th European Rotorcraft Forum. Proceedings, Paper No. 2.6, Glasgow, Scotland

    Google Scholar 

  15. Hertel, J. (1991): Euler-Lösungen der stationären Rotorströmung für Schwe be- und den axialen Vorwärtsflug mit Einbeziehung linearer Methoden. Dissertation, Universität der Bundeswehr München. Forschungsberichte VDI, Reihe 7: Strömungsmechanik Nr. 197

    Google Scholar 

  16. Hess, J. (1990): Panel Methods in Computational Fluid Dynamics. In: Lumley, J., van Dyke, M. (eds.) Annual Review of Fluid Mechanics, pp. 255 – 274. Annual Reviews Inc., Palo Alto, California

    Google Scholar 

  17. Hess, J., Smith, A. (1964): Calculation of Nonlifting Potential Flow About Arbitrary Three-Dimensional Bodies. Journal of Ship Research, pp. 22 - 44

    Google Scholar 

  18. Hoeijmakers, H. (1991): Panel Methods for Aerodynamic Analysis and Design. Special Course on Engineering Methods in Aerodynamic Analysis and Design of Aircraft, AGARD-R-783, pp. 5-1 - 5-47, Neuilly sur Seine, France

    Google Scholar 

  19. Hoeijmakers, H., Bennekers, B. (1978): A Computational Model for the Calculation of the Flow Form about Wings with Leading-Edge Vortices. Technical Report, National Aerospace Laboratory NLR, Amsterdam, the Netherlands

    Google Scholar 

  20. Hunt, B. (1977): Relationships between Volume, Surface and Line Distributions of Vorticity, Source and Doublicity. Report Ae/384, British Aircraft Corporation, Military Aircraft Division, Warton Aerodrome, Preston, PR4 IAX

    Google Scholar 

  21. Hunt, B. (1980): The Mathematical Basis and Numerical Principles of the Boundary Integral Method for Incompressible Potential Flow over 3-D Aerodynamic Configurations. In: Hunt, B. (ed.) Numerical Methods in Applied Fluid Dynamics, pp. 49 – 135. Academic Press, London New York Toronto Sydney San Francisco

    Google Scholar 

  22. Jones, H., Caradonna, F.X. (1986): Full Potential Modelling of Blade Vortex Interactions. 12th European Rotorcraft Forum. DGLR, September 1986

    Google Scholar 

  23. Kandil, O. (1985): Computational Technique for Compressible Vortex Flows Past Wings at Large Incidence. Journal of Aircraft, 22(9) 750 – 755

    Article  Google Scholar 

  24. Kandil, O., Chu, L., Tureaud, T. (1984): A Nonlinear Hybrid Vortex Method for Wings at Large Angle of Attack. AIAA Journal, 22(3) 329 – 336

    Article  MATH  Google Scholar 

  25. Kandil, O., Yates, E. (1986): Transonic Vortex Flows Past Delta Wings: Integral Equation Approach. AIAA Journal, 24(11) 1729 - 1736

    Article  Google Scholar 

  26. Kellogg, O. (1967): Foundations of Potential Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen Band 31. Springer, Berlin Heidelberg New York

    Google Scholar 

  27. Kramer, C. (1988): Erstellen eines mathematischen Modells zur Berechnung der freien Wirbelschicht im Nachlauf von Rotoren. Semesterarbeit, Institut für Luftfahrttechnik und Leichtbau, Universität der Bundeswehr

    Google Scholar 

  28. Krämer, E., Hertel, J., Wagner, S. (1987): Computation of Subsonic and Transonic Helicopter Rotor Flow Using Euler Equations. 13th European Rotorcraft Forum, Proceedings, Paper No. 2-14, Aries, France. Vertica, 12(3), 279 - 291, 1988

    Google Scholar 

  29. Krämer, E., Hertel, J., Wagner, S. (1990): Euler Procedure for Calculation of the Steady Rotor Flow with Emphasis on Wake Evolution. 8th Applied Aerodynamics Conference, Proceedings, AlAA-paper 90-3007, Portland, Oregon

    Google Scholar 

  30. Krämer, E. (1991): Theoretische Untersuchungen der stätionaren Rotorblattumströmung mit Hilfe eines Euler-Verfahrens. Dissertation, Universität der Bundeswehr München. Forschungsberichte VDI, Reihe 7: Strömungsmechanik Nr. 197

    Google Scholar 

  31. Maskew, B., Woodward, F. (1976): Symmetrical Singularity Model for Lifting Potential Flow Analysis. Journal of Aircraft, 13(9) 733 – 734, September 1976

    Article  Google Scholar 

  32. Maskew, B. (1987): Program VSAERO Theory Document - A Computer Program for Calculating Nonlinear Aerodynamic Characteristics of Arbitrary Configurations. NASA Contractor Report 4023, NASA National Aeronautics and Space Administration, Ames Research Center

    Google Scholar 

  33. Röttgermann, A. (1988): Ein Singularitätenverfahren zur Berechnung des Nachlaufs von Mehrblattrotorsystemen. Diplomarbeit, Institut für Luftfahrttechnik und Leichtbau, Universität der Bundeswehr München

    Google Scholar 

  34. Röttgermann, A. (1995): Eine Methode zur Berücksichtigung kompressibler und transsonischer Effekte in Randelementmethoden. Dissertation, Universität Stuttgart

    Google Scholar 

  35. Röttgermann, A., Behr, R., Schöttl, Ch., Wagner, S. (1991): Calculation of Blade-Vortex Interaction of Rotary Wings in Incompressible Flow by an Unsteady Vortex-Lattice Method Including Free Wake Analysis. In: Hackbusch, W. (ed.) Notes on Numerical Fluid Mechanics Vol. 33: Numerical Techniques for Boundary Element Methods. Vieweg, Braunschweig, pp. 153 – 166

    Google Scholar 

  36. Röttgermann, A., Wagner, S. (1995): ROFPM — Eine transsonische Panelmethode: Wirbelgitterverfahren und Feldpanelverfahren. Institutsbericht IB 95-4, Institut für Aerodynamik und Gasdynamik, Universität Stuttgart

    Google Scholar 

  37. Sauter, St. (1991): Der Aufwand der Panel-Clustering-Methode für Integralgleichungen. Institutsbericht 9115, Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität Kiel

    Google Scholar 

  38. Sauter, St. (1992): Über die effiziente Verwendung des Galerkinverfahrens zur Lösung Fredholmscher Integralgleichungen. Dissertation, Christian-Albrechts-Universität Kiel

    Google Scholar 

  39. Slooff, J. (1985): Some New Developments in Exact Integral Equation Formulations for Sub- or Transonic Compressible Potential Flow. In: Morino, L. (ed.) Computational Methods in Potential Aerodynamics, pp. 703 – 725. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  40. Stangl, R., Wagner, S. (1992): Calculation of the Steady Rotor Flow Using an Overlapping-Embedded Grid Technique. 18th European Rotorcraft Forum Proceedings, Paper No. ERF 92-71, Avignon, France. Paper No. 78.

    Google Scholar 

  41. Tinoco, E., Ball, D., Rice, F. (1987): PAN AIR Analysis of a Transport High Lift Configuration. Journal of Aircraft, 24(3) 181 – 187

    Article  Google Scholar 

  42. Urban, Ch. (1988): Ein Wirbelgitterverfahren zur Berechnung von Interferenzeffekten zwischen Tragflächen und freien Wirbelschichten bei Unterschallströmung. Dissertation, Universität der Bundeswehr München

    Google Scholar 

  43. Wagner, S. (1967): Beitrag zum Singuläritatenverfahren der Trägflachentheorie bei inkompressibler Strömung. Dissertation, Technische Hochschule München. auch Ingenieur-Archiv, 36, 403 – 420, 1968

    Google Scholar 

  44. Wagner, S. (1969): On the Singularity Method of Subsonic Lifting-Surface Theory. Journal of Aircraft, 6(6) 549 – 558

    Article  Google Scholar 

  45. Wagner, S. (1987): The Panel Method - A Unique Tool for the Aerodynamic Analysis of Complex Configurations in Subsonic and Supersonic Flow. In: Brebbia, C.A., Wendland, W.L., Kuhn, G. (eds.) 9th International Conference- Boundary Element Methods in Engineering - Boundary Elements IX, pp. 519 – 538. Springer, Berlin Heidelberg New York London Paris Tokyo

    Google Scholar 

  46. Wagner, S., Urban, Ch. (1986): Current Activities in Basic Research Work on Panel Methods in Germany. In: Hirschel, E.H. (ed.) Notes on Numerical Fluid Mechanics, Vol. 14: Finite Approximations in Fluid Mechanics. Vieweg, Braunschweig Wiesbaden, pp. 273 – 294

    Google Scholar 

  47. Wagner, S., Urban, Ch., Behr, R. (1987): A Vortex-Lattice Method for the Calculation of Wing-Vortex Interaction in Subsonic Flows. In: Ballman, J., Eppler, R., Hackbusch, W. (eds.) GAMM-Symposium, Notes on Numerical Fluid Mechanics, Vol. 21: Panel Methods in Fluid Mechanics with Emphasis on Aerodynamics. Vieweg, Kiel, pp. 243 - 251

    Google Scholar 

  48. Zerle, L., Wagner, S. (1992): Development and Validation of a Vortex Lattice Method to Calculate the Flowfield of a Helicopter Rotor Including Free Wake Development. 18th European Rotorcraft Forum, Proceedings, Paper No. ERF 92-72, Avignon, France

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wagner, S., Röttgermann, A. (1997). A Transonic Panel Method for Helicopter Flows. In: Wendland, W.L. (eds) Boundary Element Topics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60791-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60791-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64554-9

  • Online ISBN: 978-3-642-60791-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics