Skip to main content

Different Methodologies for Coupled BEM and FEM with Implementation on Parallel Computers

  • Conference paper
  • 157 Accesses

Abstract

The boundary element method (BEM) and the finite element method (FEM) may be computationally expensive if complex problems are to be solved, thus there is the need of implementing them on fast computer architectures, especially parallel computers. Because BEM and FEM are complementary to each other, the coupling of these methods is widely used. In this paper, a parallel FE-BE-code and its implementation on a distributed memory system (Parsytec MultiCluster2) is described. As model problems, we assume linear elasticity for the boundary element method and elastoplasticity for the finite element method. The efficiency of our implementation is shown by various test examples. Two coupling methods are proposed. First, we show by numerical examples that a multiplicative Schwarz method for coupling BEM with FEM is very well suited for parallel implementation. Furthermore, we treat a symmetric coupling of Galerkin-Bem and mixed finite elements of Raviart-Thomas type leading to improved stress approximation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader, G., Gehrke, E. (1991): On the performance of transputer networks for solving linear systems of equations. Parallel Computing 17, 1397–1407

    Article  MATH  Google Scholar 

  2. Braess, D., Klaas, O., Niekamp, R., Stein, E., Wobschal, F. (1995): Error indicators for mixed finite elements in 2-dimensional linear elasticity. Comput. Methods Appl. Mech. Engrg. 127, 345–356

    Article  MathSciNet  MATH  Google Scholar 

  3. Brink, U., Carstensen, C., Stein, E. (1996): Symmetric coupling of boundary elements and Raviart-Thomas-type mixed finite elements in elastostatics. Numer. Math., in print

    Google Scholar 

  4. Brink, U., Klaas, O., Niekamp, R., Stein, E. (1995): Coupling of adaptively refined dual mixed finite elements and boundary elements in linear elasticity. Advances in Engineering Software 24, 13–26

    Article  MATH  Google Scholar 

  5. Costabel, M.(1988): A symmetric method for the coupling of finite elements and boundary elements. In: Whiteman, J.R. (ed.) The Mathematics of Finite Elements and Applications IV, MAFELAP 1987. Academic Press, London

    Google Scholar 

  6. Gruttmann, F., Stein, E. (1988): Tangentiale Steifigkeitsmatrizen bei der Anwendung von Projektionsverfahren in der Elastoplastizitätstheorie. Ing.-Arch. 58, 15–24

    Article  MATH  Google Scholar 

  7. Haase, G., Langer, U., Meyer, A. (1990): A new approach to the Dirichlet domain decomposition method. Proc. ‘5th Multigrid Seminar’, R-MATH-09/90, Karl-Weierstrass-Institut für Mathematik, Berlin

    Google Scholar 

  8. Haase, G., Langer, U., Meyer, A. (1992): Parallelisierung und Vorkonditionierung des CG-Verfahrens durch Gebietszerlegung. In: Bader, G., Rannacher, R., Wittum, G. (eds.) Numerische Algorithmen auf Transputer-Systemen. Teubner Skripten zur Numerik. Teubner, Stuttgart

    Google Scholar 

  9. Klaas, O., Kreienmeyer, M., Stein, E. (1993): Numerische Lösung ebener Probleme der linearen Elastizitätstheorie mit der direkten Randelementmethode auf einem MIMD-Parallelrechner. In: Baumann, M., Grube, D. (eds.) Parallele Datenverarbeitung mit dem Transputer. Springer, Berlin Heidelberg New York, pp. 265–274

    Google Scholar 

  10. Klaas, O., Kreienmeyer, M., Stein, E. (1994): Elasto-plastic finite element analysis on a MIMD parallel-computer. Eng. Analysis — Int. J. Comp. Aided Eng. Software 11, (4), 347–355

    MATH  Google Scholar 

  11. Klaas, O., Niekamp, R., Stein, E. (1995): Parallel Adaptive Finite Element Computations with Hierarchical Preconditioning. Int. J. Comp. Mech. 16, 45–52

    MATH  Google Scholar 

  12. Kreienmeyer, M. (1995): Kopplung von Rand- und Finite-Element-Methodsn für ebene Elastoplastizität mit Implementierung auf Parallelrechnern. Doctoral Thesis, Universität Hannover. Submitted

    Google Scholar 

  13. Kreienmeyer, M., Stein, E. (1993): Parallel implementation of BEM, FEM and coupled FEM-BEM on a transputer network. IBNM-Bericht 93/9

    Google Scholar 

  14. Kreienmeyer, M., Stein, E. (1995): Parallel implementation of the boundary element method for linear elastic problems on a MIMD parallel computer. Int. J. Comp. Mech. 15, (4), 342–349

    MATH  Google Scholar 

  15. Law, K.H. (1986): A parallel finite element solution method. Computers h Structures 23, (6), 845–858

    Article  MATH  Google Scholar 

  16. Lubliner, J. (1990): Plasticity Theory. Macmillan Publishing Company, New York

    MATH  Google Scholar 

  17. Maischak, M. (1992): Eine Randelement-Diskretisierung und projiziertes SORVerfahren für ein Kontaktproblem der Elastostatik. Diplomarbeit, Institut für Angewandte Mathematik, Universität Hannover

    Google Scholar 

  18. Romate, J.E. (1993): On the use of conjugate gradient-type methods for boundary integral equations. Int. J. Comp. Mech. 12, 214–233

    MathSciNet  MATH  Google Scholar 

  19. Saad, Y., Schultz, M.H. (1986): GMRES: A generalized minimal residual method for solving nonsymmetric linear systems. SIAMJ. Sci. Statist. Comput. 7, 856–869

    Article  MathSciNet  MATH  Google Scholar 

  20. Sawin, G.N. (1956): Spannungserhöhung am Rande von Löchern. VEB Verlag Technik, Berlin

    MATH  Google Scholar 

  21. Schwarz, H.A. (1870): Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich, Band 15

    Google Scholar 

  22. Simo, J., Taylor, R.L. (1986): A return mapping algorithm for plane stress elastoplasticity. Int. J. Num. Meth. Eng. 22, 649–670

    Article  MathSciNet  MATH  Google Scholar 

  23. Simon, H.D. (1991): Partitioning of unstructured problems for parallel processing. Comp. Systems Eng. 2, 135–148

    Article  Google Scholar 

  24. Stenberg, R. (1988): A family of mixed finite elements for the elasticity problem. Numer. Math. 53, 513–538

    Article  MathSciNet  MATH  Google Scholar 

  25. van der Vorst, H.A. (1992): BI-CGSTAB: A Fast and Smoothly Converging Variant of BI-CG for the solution of Nonsymmetric Linear Systems. SIAMJ. Sci. Statist. Comput. 13, 631–640

    Article  MATH  Google Scholar 

  26. Yserentant, H. (1991): Hierarchical bases. In: O’Malley, R.E. (ed.) ICIAM 91. SIAM, Philadelphia.

    Google Scholar 

  27. Yserentant, H. (1986): On the Multi-Level Splitting of Finite Element Spaces. Numer. Math. 49, 379–412

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brink, U., Kreienmeyer, M., Stein, E. (1997). Different Methodologies for Coupled BEM and FEM with Implementation on Parallel Computers. In: Wendland, W.L. (eds) Boundary Element Topics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60791-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60791-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64554-9

  • Online ISBN: 978-3-642-60791-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics