Skip to main content

Future Clinical Trials of Pharmacologic Interventions

  • Conference paper
Acute Lung Injury

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 30))

  • 174 Accesses

Abstract

Acute respiratory distress syndrome (ARDS) was first described as a clinical entity by Ashbaugh and Petty more than 25 years ago [1]. Since that initial description, there has been growing understanding of the pathophysiologic mechanisms which lead to the development of acute lung injury (ALI) in patient populations at risk. In particular, the roles of proinflammatory cytokines, chemokines, adhesion molecules, and oxygen radicals as mediators of pulmonary inflammation have been characterized. Alterations in neutrophil function, as well as the role of the neutrophil in damaging the lung and contributing to the development of ARDS and ALI have been described. Other chapters in this book have reviewed the mediators and cellular factors which contribute to the development of acute inflammatory lung injury, so that further discussion of the pathophysiology of ARDS is not required in this chapter. Rather, I will try to assess therapeutic approaches to ARDS and ALI which may be beneficial in the next 15 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE (1967) Acute respiratory distress in adults. Lancet 2: 319 – 323

    Article  PubMed  CAS  Google Scholar 

  2. Fisher CJ, Slotman GJ, Opal SM, et al (1994) Initial evaluation of human recombinant interleukin—1 receptor antagonist in the treatment of sepsis syndrome: A randomized, open—label, placebo—controlled multicenter trial. Crit Care Med 22: 12 – 21

    PubMed  Google Scholar 

  3. Fisher CJ, Dhainaut JF, Opal SM, et al (1994) Recombinant human interleukin—1 receptor antagonist in the treatment of patients with sepsis syndrome. JAMA 271: 1836 – 1843

    Article  PubMed  Google Scholar 

  4. Opal SM, Fisher CJ, Pribble JP, et al (1997) The confirmatory interleukin-1 receptor antagonist trial in severe sepsis: A phase III randomized, double—blind, placebo—controlled, multi-center trial. Crit Care Med (In press)

    Google Scholar 

  5. Abraham E (1996) Status report of soluble receptors in the treatment of septic shock. Presented at IBC Sixth Annual International Symposium on Sepsis, Boston, USA (Abst )

    Google Scholar 

  6. Abraham E, Wunderink R, Silverman H, et al (1995) Monoclonal antibody to human tumor necrosis factor alpha (TNFa MAb): Efficacy and safety in patients with the sepsis syndrome. JAMA 273: 934 – 941

    Article  PubMed  CAS  Google Scholar 

  7. Cohen J, Carlet J, for the INTERSEPT Study Group (1996) INTERSEPT: An international, multicenter, placebo—controlled trial of monoclonal antibody to human tumor necrosis factor–a in patients with sepsis. Crit Care Med 24: 1431 – 1440

    Article  Google Scholar 

  8. Reinhart K, Wiegand—Lohnert C, Grimminger F, et al (1996) Assessment of the safety and efficacy of the monoclonal anti–tumor necrosis factor antibody—fragment, MAK 195F, in patients with sepsis and septic shock: A multicenter, randomized, placebo—controlled, dose—ranging study. Crit Care Med 24: 733 – 742

    Article  PubMed  CAS  Google Scholar 

  9. Fisher CJ, Agosti JM, Opal SM, et al (1996) Treatment of patients with septic shock with tumor necrosis factor receptor Fc fusion protein. N Engl J Med 334: 1697 – 1702

    Article  PubMed  CAS  Google Scholar 

  10. Evans TJ, Moyes D, Carpenter A, et al (1994) Protective effect of 55— but not 75—kD soluble tumor necrosis factor receptor—immunoglobulin G fusion proteins in an animal model of Gram—negative sepsis. J Exp Med 180: 2173 – 2179

    Article  PubMed  CAS  Google Scholar 

  11. Moore KW, O’Garra A, de Waal Malefyt R, Vieira P, Mosmann TR (1993) Interleukin 10. Ann Rev Immunol 11: 165 – 190

    Article  CAS  Google Scholar 

  12. Howard M, Muchamuel T, Andrade S, Menon S (1993) Interleukin—10 protects mice from lethal endotoxemia. J Exp Med 177: 1205 – 1208

    Article  PubMed  CAS  Google Scholar 

  13. Greenberger MJ, Strieter RM, Kunkel SL, Danforth JM, Goodman RE, Standiford TJ (1995) Neutralization of IL—10 increases survival in a murine model of Klebsiella pneumonia. J Immunol 155: 722 – 729

    PubMed  CAS  Google Scholar 

  14. Abraham E (1996) Alterations in transcriptional regulation of proinflammatory and immunoregulatory cytokine expression by hemorrhage, injury, and critical illness. New Horizons 4: 184 – 193

    PubMed  CAS  Google Scholar 

  15. Baeuerle PA, Baltimore D (1996) NF—KB: Ten years after. Cell 87: 13 – 20

    Article  PubMed  CAS  Google Scholar 

  16. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF—kappa B transcription factor and HIV 1. EMBO J 10: 2247 – 2258

    PubMed  CAS  Google Scholar 

  17. Shenkar R, Schwartz MD, Terada L, Repine J, McCord J, Abraham E (1996) Hemorrhage activates NF–KB in murine lung mononuclear cells in vivo: Role of xanthine oxidase—derived superoxide anion. Am J Physiol (Lung Cell Mol Physiol) 270–. L729 – L735

    Google Scholar 

  18. Satriano J, Schlondorff D (1994) Activation and attenuation of transcription factor NF—KB in mouse glomerular mesangial cells in response to tumor necrosis factor—a, immunoglobulin G, and adenosine 3 ′: 5 ′ —cyclic monophosphate. J Clin Invest 94: 1629 – 1636

    Article  PubMed  CAS  Google Scholar 

  19. Blackwell TS, Blackwell TR, Holden EP, Christman BW, Christman JW (1996) In vivo antioxidant treatment suppresses nuclear factor—kB activation and neutrophilic lung inflammation. J Immunol 157: 1630 – 1637

    PubMed  CAS  Google Scholar 

  20. Schwartz MD, Moore EE, Moore FA, et al (1996) NF—KB is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Crit Care Med 24: 1285 – 1292

    Article  PubMed  CAS  Google Scholar 

  21. Nick JA, Avdi NJ, Gerwins P, Johnson GL, Worthen GS (1996) Activation of a p38 mitogen—activated protein kinase in human neutrophils by lipopolysaccharide. J Immunol 156: 4867 – 4875

    PubMed  CAS  Google Scholar 

  22. Raingeaud J, Gupta S, Rogers JS, et al (1995) Proinflammatory cytokines and environmental stress cause p38 mitogen—activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270: 7420 – 7426

    Article  PubMed  CAS  Google Scholar 

  23. Kolesnick R, Golde DW (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin—1 signaling. Cell 77: 325 – 328

    Article  PubMed  CAS  Google Scholar 

  24. Eierman DF, Yagami M, Erme SM, et al (1995) Endogenously opsonized particles divert prostanoid action from lethal to protective in models of experimental endotoxemia. Proc Natl Acad Sci USA 92: 2815 – 2819

    Article  PubMed  CAS  Google Scholar 

  25. Abraham E, Park Y, Covington P, Conrad SA, Schwartz M (1996) Liposomal prostaglandin El (TLC C—53) in acute respiratory distress syndrome (ARDS): A placebo—controlled, randomized, double—blind, multicenter clinical trial. Crit Care Med 24: 10 – 15

    Article  PubMed  CAS  Google Scholar 

  26. Law MM, Cryer HG, Abraham E (1994) Elevated levels of soluble ICAM—1 correlate with the development of multiple organ failure in severely injured trauma patients. J Trauma 37: 100 – 109

    Article  PubMed  CAS  Google Scholar 

  27. Sakamaki F, Ishizaka A, Handa M, et al (1995) Soluble form of p—selectin in plasma is elevated in ALL Am J Respir Crit Care Med 151: 1821 – 1826

    CAS  Google Scholar 

  28. Kushimoto S, Okajima K, Uchiba M, Murakami K, Okabe H, Takatsuki K (1996) Pulmonary vascular injury induced by hemorrhagic shock is mediated by p—selectin in rats. Thrombosis Res 82: 97 – 106

    Article  CAS  Google Scholar 

  29. Mulligan MS, Paulson JC, De Frees S, Zheng ZL, Lowe JB, Ward PA (1993) Protective effects of oligosaccharides in P—selectin—dependent lung injury. Nature 364: 149 – 151

    Article  PubMed  CAS  Google Scholar 

  30. Nagase T, Ohga E, Sudo E, et al (1996) Intercellular adhesion molecule—1 mediates acid aspiration—induced lung injury. Am J Respir Crit Care Med 154: 504 – 510

    PubMed  CAS  Google Scholar 

  31. Bernard GR, Dupont W, Edens T, et al (1994) Antioxidants in the acute respiratory distress syndrome (ARDS) Am J Respir Crit Care Med 149: A241 (Abst)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abraham, E. (1998). Future Clinical Trials of Pharmacologic Interventions. In: Marini, J.J., Evans, T.W. (eds) Acute Lung Injury. Update in Intensive Care and Emergency Medicine, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60733-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60733-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64532-7

  • Online ISBN: 978-3-642-60733-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics