Skip to main content

Permissive Hypercapnia or the Prone Position in ARDS?

  • Conference paper
Acute Lung Injury

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 30))

Abstract

Permissive hypercapnia has been widely accepted in the ventilatory support of patients with the acute respiratory distress syndrome (ARDS) as a result of the rediscovery that the tidal volume (VT) and level of positive end-expiratory pressure (PEEP) used in the support of these patients might, and of themselves, cause further injury. The rationale for permissive hypercapnia is that the smaller tidal volumes resulting from lower peak and higher expiratory alveolar pressure would limit lung stretch, thereby reducing the risk of ventilation-induced lung injury [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Slutsky AS (1993) Mechanical ventilation. American College of Chest Physicians’ Consensus Conference. Chest 104: 1833 – 1859

    Article  PubMed  CAS  Google Scholar 

  2. Chattel G, Sab JM, Dubois JM, Sirodot M, Gaussorgues P, Robert D (1997) Prone position in mechanically ventilation patients with severe acute respiratory failure. Am J Respir Crit Care Med (In press)

    Google Scholar 

  3. Langer M, Mascheroni D, Marcolin R, Gattinoni L (1988) The prone position in ARDS patients. A clinical study. Chest 94: 103 – 107

    Article  PubMed  CAS  Google Scholar 

  4. Piehl MA, Brown RS (1976) Use of extreme position changes in respiratory failure. Crit Care Med 4: 13 – 14.

    Article  PubMed  CAS  Google Scholar 

  5. Douglas WW, Rehder K, Beynen RM, Sessler AD, Marsh HM (1977) Improved oxygenation in patients with acute respiratory failure: The prone position. Am Rev Respir Dis 115: 559 – 566

    PubMed  CAS  Google Scholar 

  6. Lamm WJE, Graham MM, Albert RK (1994) Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med 150: 184 – 193

    PubMed  CAS  Google Scholar 

  7. Egan E A, Nelson RM, Olver RE (1976) Lung inflation and alveolar permeability to non—electrolytes in the adult sheep in vivo. J Physiol 260: 409 – 424

    PubMed  CAS  Google Scholar 

  8. Baile EM, Albert RK, Kirk W, Lakshminarayan S, Wiggs BJR, Pare PD (1984) Positive end—expiratory pressure decreases bronchial blood flow in the dog. J Appi Physiol (Respir Environ Exercise Physiol) 56: 1289 – 1293

    CAS  Google Scholar 

  9. Lakshminarayan S, Jindal SK, Kirk W, Butler J (1990) Acute increases in anastomotic bronchial circulation to pulmonary blood flow die to generalized lung injury. J Appi Physiol 62: 2358 – 2361

    Google Scholar 

  10. Coffey RL, Robertson HT, Albert RK (1983) Mechanisms of physiological dead space response to PEEP after oleic acid lung injury. J Appi Physiol (Resp Environ Exercise Physiol) 54: 1550 – 1557

    Google Scholar 

  11. Parker JC, Townsley MI, Rippe B, Taylor AE, Thigpen J (1984) Increased microvascular permeability in dog lungs due to high peak airway pressures. J Appi Physiol 57: 1809 – 1816

    CAS  Google Scholar 

  12. Dreyfus D, Basset G, Soler P, Saumon G (1985) Intermittent positive—pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132: 880 – 884

    Google Scholar 

  13. Gattinoni L, Bombino M, Pelosi P, et al (1994) Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA 271: 1772 – 1779

    Article  PubMed  CAS  Google Scholar 

  14. Gattinoni L, Mascheroni D, Torresin A, et al (1986) Morphological response to positive end–expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Med 12: 137 – 142

    Article  PubMed  CAS  Google Scholar 

  15. Presenti A, Pilosi P, Rossi N, Virtuani A, Brazzi L, Rossi A (1991) The effect of positive end—expiratory pressure on respiratory resistance in patients with the adult respiratory distress syndrome and in normal anesthetized subjects. Am Rev Respir Dis 144: 101 – 107

    Google Scholar 

  16. Muscedere JG, Mullen JMB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327 – 1334

    PubMed  CAS  Google Scholar 

  17. Mutoh T, Guest RJ, Lamm WJE, Albert RK (1992) Prone position alters the effect of volume overload on regional pleural pressures and improves hypoxemia in pigs in vivo. Am Rev Respir Dis. 146: 300 – 306

    PubMed  CAS  Google Scholar 

  18. Froese AB, Bryan AC (1974) Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 41: 242 – 255

    Article  PubMed  CAS  Google Scholar 

  19. Webb H, Tierney D (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: Protection by positive end—expiratory pressure. Am Rev Respir Dis 110: 556 – 565

    PubMed  CAS  Google Scholar 

  20. Maunder RJ, Shuman WP, McHugh JW, Marglin SI, Butler J (1986) Preservation of normal lung regions in the adult respiratory distress syndrome: Analysis by computed tomography. JAMA 255: 2463 – 2465

    Article  PubMed  CAS  Google Scholar 

  21. Gattinoni L, Pelosi P, Vitale G, Pesenti A, D’Andrea L, Mascheroni D (1991) Body position changes redistribute computed–tomographic density in patients with acute respiratory failure. Anesthesiology 74: 15 – 23

    Article  PubMed  CAS  Google Scholar 

  22. Lai—Fook S, Rodarte JR (1991) Pleural pressure distribution and its relationship to lung volume and interstitial pressure. J Appi Physiol 70: 967 – 978

    Google Scholar 

  23. Mutoh T, Guest RJ, Lamm WJE, Albert RK (1992) Prone position alters the effect of volume overload on regional pleural pressures and improves hypoxemia in pigs in vivo. Am Rev Respir Dis 146: 300 – 306

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Albert, R.K. (1998). Permissive Hypercapnia or the Prone Position in ARDS?. In: Marini, J.J., Evans, T.W. (eds) Acute Lung Injury. Update in Intensive Care and Emergency Medicine, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60733-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60733-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64532-7

  • Online ISBN: 978-3-642-60733-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics