Skip to main content

Permissive Hypercapnia

  • Conference paper
  • 174 Accesses

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 30))

Abstract

Permissive hypercapnia (PH) is becoming a widely accepted strategy for decreasing ventilator-induced lung injury [1–13]. It is not a therapeutic endpoint, but rather the penalty we have to pay for decreasing alveolar ventilation when we give priority to the limitation of lung overdistension. Its rationale is the assumption that transitory effects of hypercapnia are less deleterious than the lung damage produced by conventional attempts to keep a target PaCO2 around 40 mmHg [13–15].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Menitove SM, Goldring RM (1983) Combined ventilator and bicarbonate strategy in the management of status asthmaticus. Am J Med 74: 898 – 901

    Article  PubMed  CAS  Google Scholar 

  2. Darioli R, Perret C (1984) Mechanical controlled hypoventilation in status asthmaticus. Am Rev Respir Dis 129: 385 – 387

    PubMed  CAS  Google Scholar 

  3. Perret C, Feihl F (1992) Respiratory failure in asthma: management of the mechanically ventilated patient. In: Vincent JL (ed) Update in Intensive Care Medicine. Springer–Verlag, Berlin, pp 364 – 371

    Google Scholar 

  4. Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnea in severe adult respiratory dis¬tress syndrome. Intensive Care Med 16: 372 – 377

    Article  PubMed  CAS  Google Scholar 

  5. Hickling KG, Walsh J, Henderson S, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low–volume, pressure–limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22: 1568 – 1578

    Article  PubMed  CAS  Google Scholar 

  6. Bidani A, Tzouanakis AE, Cardenas VJ Jr, Zwischenberger JB (1994) Permissive hypercapnia in acute respiratory failure. JAMA 272: 957 – 962

    Article  PubMed  CAS  Google Scholar 

  7. Feihl F, Perret C (1994) Permissive hypercapnia. How permissive should we be? Am J Respir Crit Care Med 150: 1722 – 1737

    PubMed  CAS  Google Scholar 

  8. Tuxen DV (1994) Permissive hypercapnia. In: Tobin MJ (ed) Principles and Practice of Mechanical Ventilation. McGraw Hill, New York, pp 371 – 392

    Google Scholar 

  9. Mclntyre RC, Haenel JV, Moore FA, Read RR, Burch JM, Moore EE (1994) Cardiopulmonary effects of permissive hypercapnia in the management of adult respiratory distress syndrome. J Trauma 37: 433 – 438

    Article  Google Scholar 

  10. Amato MBP, Barbas CSV, Medeiros DM, et al (1995) Beneficial effects of the “open lung approach” with low distending pressures in ARDS: A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 152: 1835 – 1846

    PubMed  CAS  Google Scholar 

  11. Simon RJ, Mawilmada S, Ivatury RR (1994) Hypercapnia: Is there a cause for concern? J Trauma 37: 74 – 81

    Article  PubMed  CAS  Google Scholar 

  12. Gentilello LM, Anardi D, Mock C, Arreola–Risa C, Maier RV (1995) Permissive hypercapnia in trauma patients. J Trauma 39: 846 – 853

    CAS  Google Scholar 

  13. Pesenti A (1990) Target blood gases during ARDS ventilatory management. Intensive Care Med 16: 349 – 351

    Article  PubMed  CAS  Google Scholar 

  14. Rahn H (1976) Why are pH of 7.4 and PaC02 of 40 mmHg normal values for man? Bull Eur Physiopathol Res 12: 5 – 12

    CAS  Google Scholar 

  15. Rahn H, Reeves RB, Howell BJ (1975) Hydrogen ion regulation, temperature and evolution. Am Rev Respir Dis 112: 165 – 172

    PubMed  CAS  Google Scholar 

  16. Braman SS, Kaemmerlen JT (1990) Intensive care of status asthmaticus. A 10–year experience. JAMA 264: 366 – 368

    Article  PubMed  CAS  Google Scholar 

  17. Sydow M, Burchardi H (1991) Intensive care management of life–threatening status asthmaticus. In: Vincent JL (ed) Update in Intensive Care and Emergency Medicine. Springer–Verlag, Berlin, pp 313 – 323

    Google Scholar 

  18. Henderson A, Wright M (1992) Status asthmaticus: experience of 100 consecutive admissions to an intensive care unit. Clin Intensive Care 3: 148 – 152

    Google Scholar 

  19. Williams TJ, Tuxen DV, Scheinkestel CD, Czarny D, Bowes G (1992) Risk factors for morbidity in mechanically ventilated patients with acute vere asthma. Am Rev Respir Dis 146: 607 – 615

    PubMed  CAS  Google Scholar 

  20. Bellomo R, McLaughlin P, Tai E, Parkin G (1994) Asthma requiring mechanical ventilation. A low morbidity approach. Chest 105: 891 – 896

    Article  PubMed  CAS  Google Scholar 

  21. Picado C, Montserrat JM, Roca J, et al. (1983) Mechanical ventilation in severe exacerbation of asthma. Eur J Respir Dis 64: 102 – 107

    PubMed  CAS  Google Scholar 

  22. Higgins B, Greening AP, Crompton GK (1986) Assisted ventilation in severe acute asthma. Thorax 41: 464 – 467

    Article  PubMed  CAS  Google Scholar 

  23. Mansel JK, Stegner SW, Petrini MF, Norman JR (1990) Mechanical ventilation in patients with acute severe asthma. Am J Med 89: 42 – 48

    Article  PubMed  CAS  Google Scholar 

  24. Luksza A, Smith P, Coakley J, Gordan IJ, Atherton ST (1986) Acute severe asthma treated by mechanical ventilation: 10 years’ experience from a district general hospital. Thorax 41: 459 – 463

    Article  PubMed  CAS  Google Scholar 

  25. Lewandowski K, Slama K, Falke KJ (1992) Approaches to improve survival in severe ARDS. In: Vincent JL (ed) Update of Intensive Care and Emergency Medicine. Springer–Verlag, Berlin, pp 372 – 383

    Google Scholar 

  26. Lewandowski K, Pappert D, Gerlach H, Rossaint R, Kuhlen R, Falke KJ (1995) Permissive hypercapnia in the treatment of ARDS. Am J Respir Crit Care Med 151: A79 (Abst)

    Google Scholar 

  27. Reynolds EM, Ryan DP, Doody DP (1993) Permissive hypercapnia and pressure–controlled ventilation as treatment of severe adult respiratory distress syndrome in a pediatric burn patient. Crit Care Med 21: 944 – 947

    Article  PubMed  CAS  Google Scholar 

  28. Sheridan RL, Kacmarek RM, McEttrick MM, et al (1995) Permissive hypercapnia as a ventilatory strategy in burned children: Effect on barotrauma, pneumonia and mortality.J Trauma 39: 854 – 859

    CAS  Google Scholar 

  29. Kraybill EN, Runyan DK, Bose CL, Khan JH (1989) Risk factors for chronic lung disease in infants with birth weights of 751 to 1000 grams. J Pediatr 115: 155 – 170

    Google Scholar 

  30. Amato MBP, Barbas CSV, Medeiros D, et al (1996) Improved survival in ARDS: Beneficial effects of a lung protective strategy. Am J Respir Crit Care Med 153: A531 (Abst)

    Google Scholar 

  31. Roupie E, Dambrosio M, Servillo G, et al (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152: 121 – 128

    PubMed  CAS  Google Scholar 

  32. Slutsky AS (1993) ACCP Consensus Conference. Mechanical Ventilation. Chest 104: 1833 – 1859

    Article  PubMed  CAS  Google Scholar 

  33. Bshouty Z, Younes M (1992) Effect of breathing pattern and level of ventilation on pulmonary fluid filtration in dog lung. Am Rev Respir Dis 145: 372 – 376

    PubMed  CAS  Google Scholar 

  34. Stalcup SA, Mellins RB (1977) Mechanical forces producing pulmonary edema in acute asthma. N Engl J Med 297: 592 – 596

    Article  PubMed  CAS  Google Scholar 

  35. Mascheroni D, Kolobow T, Fumagalli R, Moretti MP, Buckhold D (1988) Acute respiratory failure following pharmacologically induced hyperventilation: an experimental study. Intensive Care Med 15: 8 – 14

    Article  PubMed  CAS  Google Scholar 

  36. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume and positive end–expiratory pressure. Am Rev Respir Dis 137: 1159 – 1164

    PubMed  CAS  Google Scholar 

  37. Hernandez LA, Peevy KJ, Moise AA, Parker JC (1989) Chest wall restriction limits high airway pressure–induced lung injury in young rabbits. J Appi Physiol 66: 2364 – 2368

    CAS  Google Scholar 

  38. Amato MBP, Barbas CSV, Bonassa J, Saldiva PHN, Zin WA, Carvalho CRR (1992) Volume as sured pressure support ventilation (VAPSV). A new approach for reducing muscle work load during acute respiratory failure. Chest 102: 1225 – 1234

    Article  PubMed  CAS  Google Scholar 

  39. Andersen JB (1992) Introducing pressure regulated volume control (PRVC) and volume support (VS). In: Improved Care for the Critically 111 “ Siemens ” Life Support Systems (divulging material), Copenhagen, pp 5–20

    Google Scholar 

  40. Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive end–expiratory pressure. Am Rev Respir Dis 110: 556 – 565

    PubMed  CAS  Google Scholar 

  41. Argiras EP, Blakeley CR, Dunnill MS, Otremski S, Sykes MK (1987) High PEEP decreases hyaline membrane formation in surfactant deficient lungs. Br J Anaesth 59: 1278 – 1285

    Article  PubMed  CAS  Google Scholar 

  42. Snyder JV (1987) Pulmonary physiology. In: Snyder JV, Pinsky MR (eds) Oxygen Transport in the Critically 111. Year Book Medical Publishers, pp 295 – 317

    Google Scholar 

  43. Sandhar BK, Niblett DJ, Argiras EP, Dunnill MS, Sykes MK (1988) Effects of positive end–expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med 14: 538 – 546

    Article  PubMed  CAS  Google Scholar 

  44. Bshouty Z, Younes M (1988) Effect of tidal volume and PEEP on rate of edema formation in in situ perfused canine lobes. J Appi Physiol 64: 1900 – 1907

    CAS  Google Scholar 

  45. Corbridge TC, Wood LDH, Crawford GP, Chudoba MJ, Yanos J, Sznadjer JI (1990) Adverse effects of large tidal volume and low PEEP in canine acid aspiration. Am Rev Respir Dis 142: 311 – 315

    PubMed  CAS  Google Scholar 

  46. Dreyfuss D, Saumon G (1994) Should the lung be rested or recruited? The charybdis and scylla of ventilator management. Am J Respir Crit Care Med 149: 1066 – 1068

    PubMed  CAS  Google Scholar 

  47. Muscedere JG, Mullen JBM, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327 – 1334

    PubMed  CAS  Google Scholar 

  48. Sechzer PH, Egbert LD, Linde HW, Cooper DY, Dripps RD, Price HL (1960) Effect of C02 inhalation on arterial pressure, ECG and plasma catecholamines and 17–OH corticosteroids in normal man. J Appi Physiol 15: 454 – 458

    CAS  Google Scholar 

  49. Walley KR, Lewis TH, Wood LDH (1990) Acute respiratory acidosis decreases left ventricular contractility but increases cardiac output in dogs. Circ Res 67: 628 – 635

    PubMed  CAS  Google Scholar 

  50. Wexels JC, Mjos OD (1987) Effects of carbon dioxide and pH on myocardial function in dogs with acute left ventricular failure. Crit Care Med 15: 1116 – 1120

    Article  PubMed  CAS  Google Scholar 

  51. Tang W, Weil MH, Gazmuri RJ, Bisera J, Rackow EC (1991) Reversible impairment of myocardial contractility due to hypercarbic acidosis in the isolated perfused rat heart. Crit Care Med 19: 218 – 224

    Article  PubMed  CAS  Google Scholar 

  52. Thorens JB, Jolliet P, Ritz M, Chevrolet JC (1996) Effects of rapid permissive hypercapnia on hemodynamics, gas exchange, and oxygen transport and consumption during mechanical ventilation for the acute respiratory distress syndrome. 22: 182 – 119

    CAS  Google Scholar 

  53. Rothe CF, Stein PM, MacAnespie CL, Gaddis ML (1985) Vascular capacitance responses to severe systemic hypercapnia and hypoxia in dogs. Am J Physiol 249:H 1061 – 1069

    Google Scholar 

  54. Gaddis ML, MacAnesoie CL, Rothe CF (1986) Vascular capacitance responses to hypercapnia of the vascularly isolated head. Am J Physiol 251: H164 – 170

    PubMed  CAS  Google Scholar 

  55. Amato MBP, Barbas CSV, Medeiros DM, et al (1994) Hemodynamic effects of permissive hypercapnia with high PEEP and low tidal volume in ARDS. Am J Respir Crit Care Med 149: A75 (Abst)

    Google Scholar 

  56. Thorens JB, Chopard P, Jolliet P, Chevrolet JC (1994) Effect of permissive hypercapnia on tissue oxygenation in acute respiratory failure. Am J Respir Crit Care Med 149: A68 (Abst)

    Google Scholar 

  57. Puybasset L, Stewart T, Rouby JJ, et al (1994) Inhaled nitric oxide reverses the increase in pulmonary vascular resistance induced by permissive hypercapnia in patients with ARDS. Anesthesiology 80: 1254 – 1267

    Article  PubMed  CAS  Google Scholar 

  58. Anderson RJ, Rose CE, Berns AS, Erickson AL, Arnold PE (1980) Mechanism of effect of hypercapnic acidosis on renin secretion in the dog. Am J Physiol 238: Fl 19 – F125

    Google Scholar 

  59. Nguyen PJ, Tao W, Zwischenberger T, et al (1994) Effect of rapid permissive hypercapnia on carotid, renal and mesenteric blood flows in an ovine model. Am J Respir Crit Care Med 149: A69 (Abst)

    Google Scholar 

  60. Carvalho CRR, Barbas CSV, Medeiros DM, et al (1997) Temporal hemodynamic effects of permissive hypercapnia associated with “ideal PEEP” in ARDS (In press)

    Google Scholar 

  61. Vittanen A, Salmenperä M, Heinonen J, Hynynen M (1989) Pulmonary vascular resistance before and after cardiopulmonary bypass. The effect of PaC02. Chest 95: 773 – 778

    Article  Google Scholar 

  62. Chang AC, Zucker HA, Hickey PR, Wessel DL (1995) Pulmonary vascular resistance in infants after cardiac surgery: Role of carbon dioxide and hidrogen ion. Crit Care Med 23: 568 – 574

    Article  PubMed  CAS  Google Scholar 

  63. Baudouin SV, Evans TW (1993) Action of carbon dioxide on hypoxic pulmonary vasoconstriction in the rat lung: evidence against specific endothelium–derived relaxing factor–mediated vasodilation. Crit Care Med 21: 740 – 746

    Article  PubMed  CAS  Google Scholar 

  64. Malik AB, Kidd BSL (1973) Independent effects of changes in H+ and C02 concentrations on hypoxic pulmonary vasoconstriction. J Appi Physiol 34: 318 – 323

    CAS  Google Scholar 

  65. Leeman M, Lejeune P, Closset J, Vachiéry JL, Mélot C, Naeije R (1990) Effects of PEEP on pulmonary hemodynamics in intact dogs with oleic acid pulmonary edema. J Appi Physiol 69: 2190 – 2196

    CAS  Google Scholar 

  66. Canada E, Benumof JL, Tousdale FR (1982) Pulmonary vascular resistance correlates in intact normal and abnormal canine lungs. Crit Care Med 10: 719 – 723

    Article  PubMed  CAS  Google Scholar 

  67. Prewitt RM, McCarthy J, Wood LDH (1981) Treatment of acute low pressure pulmonary edema in dogs. Relative effects of hydrostatic and oncotic pressure, nitroprusside, and positive end–expiratory pressure. J Clin Invest 67: 409 – 418

    Article  PubMed  CAS  Google Scholar 

  68. Younes M, Bshouty Z, Ali J (1987) Longitudinal distribution of pulmonary vascular resistance with very high pulmonary blood flow. J Appi Physiol 62: 344 – 358

    CAS  Google Scholar 

  69. Collee GG, Lynch KE, Hill RD, Zapol WM (1987) Bedside measurement of pulmonary capillary pressure in patients with acute respiratory failure. Anesthesiology 66: 614 – 620

    Article  PubMed  CAS  Google Scholar 

  70. Benzing A, Bräutigam P, Geiger K, Loop T, Beyer U, Moser E (1995) Inhaled nitric oxide reduces pulmonary transvascular albumin flux in patients with acute lung injury. Anesthesiology 83: 1153 – 1161

    Article  PubMed  CAS  Google Scholar 

  71. Hida W, Hildebrandt J (1984) Alveolar surface tension, lung inflation, and hydration affect interstitial pressure [Px(f)]. J Appi Physiol 57: 262 – 270

    CAS  Google Scholar 

  72. Inoue H, Inoue C, Hildebrandt J (1980) Vascular and airway pressures, and interstitial edema affect peribronchial fluid pressure. J Appi Physiol 48: 177 – 185

    CAS  Google Scholar 

  73. Frostell CG (1994) Acute lung injury and inhaled NO. The reduction of pulmonary capillary pressure has implications for lung fluid balance. Acta Anaesthesiol Scand 38: 623 – 624

    Article  PubMed  CAS  Google Scholar 

  74. Oyesiku NM, Amacher AL (1990) Intracraneal pressure. In: Oyesiku NM, Amacher AL (eds) Patient Care in Neurosurgery, third ed. Little, Brown and Co, Boston, Toronto, London, pp 25 – 59

    Google Scholar 

  75. Fessler HE, Brwer RG, Shapiro EP, Permutt S (1993) Effects of positive end–expiratory pressure and body position on pressure in the thoracic great veins. Am Rev Respir Dis 148: 1657 – 1664

    PubMed  CAS  Google Scholar 

  76. Nanas S, Magder S (1992) Adaptations of the peripheral circulation to PEEP. Am Rev Respir Dis 146: 688 – 693

    PubMed  CAS  Google Scholar 

  77. Fletcher R (1989) Relationship between alveolar dead space and arterial oxygenation in children with congenital cardiac disease. Br J Anaesth 62: 168 – 176

    Article  PubMed  CAS  Google Scholar 

  78. Blanch L, Fernandez R, Benito S, Mancebo J, Net A (1987) Effect of PEEP on the arterial minus end–tidal carbon dioxide gradient. Chest 92: 451 – 454

    Article  PubMed  CAS  Google Scholar 

  79. Murray IP, Modell JH, Gallagher TJ, Banner MJ (1984) Titration of PEEP by the arterial minus end–tidal carbon dioxide gradient. Chest 85: 100 – 104

    Article  PubMed  CAS  Google Scholar 

  80. Coffey RL, Albert RK, Robertson HT (1983) Mechanisms of physiological dead space response to PEEP after acute oleic acid during lung injury. J Appi Physiol 55: 1550 – 1557

    CAS  Google Scholar 

  81. Selecky PA, Wasserman K, Klein M, Ziment I (1978) A graphic approach to assessing interrelationships among minute ventilation, arterial carbon dioxide tension, and ratio of physiologic dead space to tidal volume in patients on respirators. Am Rev Respir Dis 117: 181 – 184

    PubMed  CAS  Google Scholar 

  82. Cole AGH, Weller SF, Sykes MK (1984) Inverse ratio ventilation compared with PEEP in adult respiratory failure. Intensive Care Med 10: 227 – 232

    Article  PubMed  CAS  Google Scholar 

  83. Lichtwarck–Aschof M, Nielsen JB, Sjostrand UH, Edgren EL (1992) An experimental randomized study of five different ventilatory modes in a piglet model of severe respiratory distress. Intensive Care Med 18: 339 – 347

    Article  Google Scholar 

  84. Lachmann B, Haendly H, Schultz H, Jonson B (1980) Improved arterial oxygenation, PaC02 elimination, compliance and barotrauma following changes of volume–generated PEEP ventilation with inspiratory/expiratory (I/E) ratio of 1:2 to pressure–generated ventilation with I:E ratio of 4:1 in patients with severe adult respiratory distress syndrome (ARDS). Intensive Care Med 6: 64 – 76

    Google Scholar 

  85. Gattinoni L, Mascheroni D, Borelli M, Basilico E, Pesenti A (1991) Ventilation in severe ARDS: Inverted ratio ventilation and C02 removal. In: Lemaire F (ed) Mechanical Ventilation. Springer–Verlag, Berlin, pp 129 – 145

    Google Scholar 

  86. Sydow M, Burchardi H, Ephraim E, Zielmann S, Crozier TA (1994) Long–term effects of two different ventilatory modes on oxygenation in acute lung injury. Comparison of airway pressure release ventilation and volume–controlled inverse ratio ventilation. Am J Respir Crit Care Med 149: 1550 – 1556

    PubMed  CAS  Google Scholar 

  87. Marini JJ (1994) Ventilation of the acute respiratory distress syndrome. Looking for Mr. Goodmode. Anesthesiology 80: 972 – 975

    Article  PubMed  CAS  Google Scholar 

  88. Al–Saady NM (1994) Does dietary manipulation influence weaning from artificial ventilation? Intensive Care Med 20: 463 – 465

    Article  PubMed  CAS  Google Scholar 

  89. Venus B, Smith RA, Patel C, Sandoval E (1989) Hemodynamics and gas exchange alterations during intralipid infusion in patients with adult respiratory distress syndrome. Chest 95: 1278 – 1281

    Article  PubMed  CAS  Google Scholar 

  90. Askanazi J, Elwyn DH, Silverberg PA, Rosebaum SH, Kinney JM (1980) Respiratory distress syndrome secondary to a high carbohydrate load. Surgery 87: 596 – 598

    PubMed  CAS  Google Scholar 

  91. Tobin MJ, Fahey PJ (1994) Management of the patient who is “fighting the ventilator”. In: Tobin MJ (ed) Principles and Practice of Mechanical Ventilation. McGraw Hill, New York, pp 1149 – 1162

    Google Scholar 

  92. Manthous CA, Hall JB, Kushner R, Schmidt GA, Russo G, Wood LDH (1995) The effect of mechanical ventilation on oxygen consumption in critically ill patients. Am J Respir Crit Care Med 151: 210 – 214

    PubMed  CAS  Google Scholar 

  93. Zwischenberger JB, Nguyen TT, Tao W, et al (1994) IVOX with gradual permissive hypercapnia: a new management technique for respiratory failure. J Surg Research 57:9–105

    Google Scholar 

  94. Zwischenberger JB, Cardenas VJ Jr, Tao W, Niranjan SC, Clark JW, Bidani A (1994) Intravascular membrane oxygenation and carbon dioxide removal with IVOX: can improved design and permissive hypercapnia achieve adequate respiratory support during severe respiratory failure? Artif Organs 18: 833 – 839

    Article  PubMed  CAS  Google Scholar 

  95. Tao W, Zwischenberger JB, Nguyen TT, et al (1994) Performance of an intravenous gas exchanger (IVOX) in a venovenous bypass circuit. Ann Thorac Surg 57: 1484 – 1491

    Article  PubMed  CAS  Google Scholar 

  96. Brunet F, Mira JP, Cerf C, et al (1994) Permissive hypercapnia and intravascular oxygenator in the treatment of patients with ARDS. Artif Organs 18: 826 – 832

    Article  PubMed  CAS  Google Scholar 

  97. Mira JP, Brunet F, Belghith M, et al (1995) Reduction of ventilator settings allowed by intravenous oxygenator (IVOX) in ARDS patients. Intensive Care Med 21: 11 – 17

    Article  PubMed  CAS  Google Scholar 

  98. Nahum A, Ravenskraft SA, Nakos G, et al (1992) Tracheal gas insufflation during pressure–control ventilation. Effect of catheter position, diameter, and flow rate. Am Rev Respir Dis 146: 1411 – 1418

    PubMed  CAS  Google Scholar 

  99. Nahum A, Burke WC, Ravenskraft SA, et al (1992) Lung Mechanics and gas exchange during pressure control ventilation in dogs: augmentation of C02 elimination by an intratracheal catheter. Am Rev Respir Dis 146: 965 – 973

    PubMed  CAS  Google Scholar 

  100. Nahum A, Ravenscraft SA, Nakos G, Adams AB, Burke WC, Marini JJ (1993) Effect of catheter flow direction on C02 removal during tracheal gas insufflation in dogs. J Appi Physiol 75: 1238 – 1246

    CAS  Google Scholar 

  101. Ravenscraft SA, Burke WC, Nahum A, et al (1993) Intratracheal gas insufflation augments C02 clearance during mechanical ventilation. Am Rev Respir Dis 148: 345 – 351

    PubMed  CAS  Google Scholar 

  102. Nakos G, Zakinthinos S, Kotanidou A, Tsagaris H, Roussos C (1994) Tracheal gas insufflation reduces tidal volume while PaC02 is maintained constant. Intensive Care Med 20: 407 – 413

    Article  PubMed  CAS  Google Scholar 

  103. Burke WC, Nahum A, Ravenscraft SA et al (1993) Modes of tracheal gas insufflation. Comparison of continuous and phase–specific gas injection in normal dogs. Am Rev Respir Dis 148: 562 – 568

    PubMed  CAS  Google Scholar 

  104. Nahum A, Shapiro RS, Ravenscraft SA, Adams AB, Marini JJ (1995) Efficacy of expiratory tracheal gas insufflation in a canine model of lung injury. Am J Respir Crit Care Med 152: 489 – 495

    PubMed  CAS  Google Scholar 

  105. Kuo PH, Wu HD, Yu CJ, Yang SC, Lai YL (1996) Efficacy of tracheal gas insufflation in acute respiratory distress syndrome with permissive hypercapnia. Am J Respir Crit Care Med 154: 612 – 616

    PubMed  CAS  Google Scholar 

  106. Eckmann DM, Gavriely N (1996) Chest vibration redistributes intra–airway C02 during tracheal insufflation in ventilatory failure. Crit Care Med 24: 451 – 457

    Article  PubMed  CAS  Google Scholar 

  107. Sandhar BK,Niblett DJ, Argiras EP, Dunnill MS, Sykes MK (1988) Effects of positive end–expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med 14: 538 – 546

    Article  Google Scholar 

  108. Egan EA (1982) Lung inflation, lung solute permeability, and alveolar edema. J Appi Physiol 53: 121 – 125

    CAS  Google Scholar 

  109. Egan EA (1980) Response of alveolar epithelial solute permeability to changes in lung inflation. J Appi Physiol 49: 1032 – 1036

    CAS  Google Scholar 

  110. Macklem PT, Murphy B (1974) The forces applied to the lung in health and disease. Am J Med 57: 371 – 377

    Article  PubMed  CAS  Google Scholar 

  111. Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: A model of pulmonary elasticity. J Appi Physiol 28: 596 – 608

    CAS  Google Scholar 

  112. Avery ME, Tooley WH, Keller JB, et al (1987) Is chronic lung disease in low birth weight infants preventable? Pediatrics 79: 26 – 30

    PubMed  CAS  Google Scholar 

  113. Van Marter LJ, Pagano M, Allred EN, Levitón A, Kuban KCK (1992) Rate of bronchopulmonary dysplasia as a function of neonatal intensive care practices. J Pediatr 120: 938 – 946

    Article  PubMed  Google Scholar 

  114. Enhorning G, Robertson B (1972) Lung expansion in the premature rabbit fetus after tracheal deposition of surfactant. Pediatrics 50: 58 – 66

    PubMed  CAS  Google Scholar 

  115. Snyder JV, Froese A (1987) Respirator lung. In: Snyder JV, Pinsky MR (eds) Oxigen Transport in the Critically 111. Year Book Medical Publishers, pp 358 – 373

    Google Scholar 

  116. Berg TJ, Pagtakhan RD, Reed MH, Langston C, Chernick V (1975) Bronchopulmonary dysplasia and lung rupture in hyaline membrane disease: influence of continuous distending pressure. Pediatrics 55: 51 – 54

    PubMed  CAS  Google Scholar 

  117. Nilsson R, Grossmann G, Robertson B (1980) Bronchiolar epithelial lesions induced in the premature rabbit neonate by short periods of artificial ventilation. Acta Path Microbiol Scand 88: 359 – 367

    CAS  Google Scholar 

  118. Cereda M, Foti G, Müsch G, Sparacino ME, Pesenti A (1996) Positive end–expiratory pressure prevents the loss of respiratory compliance during low tidal volume ventilation in acute lung injury patients. Chest 109: 480 – 485

    Article  PubMed  CAS  Google Scholar 

  119. Blanch L, Fernandez R, Valles J, Sol’e J, Roussos C, Artigas A (1994) Effect of two tidal volumes on oxygenation and respiratory system mechanics during the early stage of adult respiratory distress syndrome. J Crit Care 9: 151 – 158

    Article  PubMed  CAS  Google Scholar 

  120. Hoppin FG, Hildebrandt J (1977) Mechanical properties of the lung. In: West JB (ed) Bioengineering Aspects of the Lung. Marcel Dekker, New York and Basel, pp 83 – 162

    Google Scholar 

  121. McCulloch PR, Forkert PG, Froese AB (1988) Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant–deficient rabbits. Am Rev Respir Dis 137: 1185 – 1192

    PubMed  CAS  Google Scholar 

  122. Amato MBP, Barbas CSV, Pastore L, Grünauer MA, Magaldi RB, Carvalho CRR (1996) Minimizing barotrauma in ARDS: Protective effects of PEEP and the hazards of driving and plateau pressures. Am J Respir Crit Care Med 153: A375 (Abst)

    Google Scholar 

  123. Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC and end–inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148: 1194 – 1203

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amato, M.B. (1998). Permissive Hypercapnia. In: Marini, J.J., Evans, T.W. (eds) Acute Lung Injury. Update in Intensive Care and Emergency Medicine, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60733-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60733-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64532-7

  • Online ISBN: 978-3-642-60733-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics