Advertisement

Vagale Wirkungen von β-Blockern verhüten lebensbedrohliche Arrhythmien

  • H. Mølgaard

Zusammenfassung

Es ist sehr gut belegt, daß β-Blocker die Mortalität nach einem Myokardinfarkt vermindern [1]. β-Blocker reduzieren vor allem die Inzidenz des plötzlichen Herztods — eine Wirkung, die andere antiischämische Medikamente nicht aufweisen. Die für diesen offensichtlich antiarrhythmischen Effekt verantwortlichen Mechanismen sind bisher nicht geklärt. Die Reduktion des plötzlichen Herztods in klinischen Präventionsstudien findet sich vor allem im Zusammenhang mit lipophilen β-Blockern. Der Nutzen ist unter β-Blockern mit ausgeprägter Verteilung im Zentralnervensystem (ZNS), wie Timolol, Propranolol und Metoprolol, weitaus größer als unter hydrophilen β-Blockern, die eine sehr viel geringere ZNS-Verteilung aufweisen. Die für diesen Unterschied verantwortlichen Mechanismen sind unklar. Experimentelle Daten weisen darauf hin, daß zentrale autonome Mechanismen verantwortlich sein könnten. Die intrazerebrale Injektion eines β-Blockers reduziert die kardiale Vulnerabilität gegenüber belastenden externen und internen Inputs [2] über eine β-Blockade in verschiedenen Bereichen des Gehirns. β-Blocker, die in das ZNS penetrieren, müßten daher theoretisch diese günstigen Wirkungen aufweisen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Yusuf S, Peto R, Lewis J, Collins R, Sleight P (1985) ß-blockade during and after myocardial infarction: An overview of the randomized trials. Prog Cardiovasc Dis 17: 335–371.CrossRefGoogle Scholar
  2. 2.
    Skinner JE (1985) Regulation of cardiac vulnerability by the cerebral defense system. J Am Coll Cardiol 5: 88B–94B.PubMedCrossRefGoogle Scholar
  3. 3.
    Leor J, Poole K, Kloner RA (1996) Sudden cardiac death triggered by an earthquake. N Engl J Med 334: 413–419.PubMedCrossRefGoogle Scholar
  4. 4.
    Meisel SR, Kutz I, Dayan KI et al. (1991) Effect of Iraqi missile war on incidence of acute myocardial infarction and sudden death in Israeli civilians. Lancet 338: 660–661.PubMedCrossRefGoogle Scholar
  5. 5.
    Frasure-Smith N, Lesp’erance F, Talajic M (1993) Depression following myocardial infarction. JAMA 270: 1819–1825.PubMedCrossRefGoogle Scholar
  6. 6.
    Billman G, Schwartz PJ, Stone HL (1982) Baroreceptor reflex-control of heart rate: A predictor of sudden cardiac death. Circulation 66: 874–880.PubMedCrossRefGoogle Scholar
  7. 7.
    Billman GE, Schwartz PJ, Stone HL (1984) The effects of daily exercise on susceptibility to sudden cardiac death. Circulation 69: 1182–1189.PubMedCrossRefGoogle Scholar
  8. 8.
    La Rovere MT, Specchia G, Mortara A, Schwartz PJ (1988) Baroreflex sensitivity, clinical correlates, and cardiovascular mortality among patients with a first myocardial infaction. Circulation 78: 816–824.PubMedCrossRefGoogle Scholar
  9. 9.
    Molgaard H (1995) 24-hour heart rate variability. Methodology and clinical aspects. Doctoral Thesis, University of Aarhus, Risskov.Google Scholar
  10. 10.
    Kleiger RE, Miller JP, Bigger JT, Moss AJ (1987) Decreased heart rate variability and its asso-ciation with increased mortality after acute myocardial infarction. Am J Cardiol 59: 256–262.PubMedCrossRefGoogle Scholar
  11. 11.
    Farrell TG, Bashir Y, Cripps T et al. (1991) Risk stratification for arrhythmic events in postin-farction patients based on heart rate variability, ambulatory electrocardiographic variables and the signal averaged electrocardiogram. J Am Coll Cardiol 18: 687–697.PubMedCrossRefGoogle Scholar
  12. 12.
    Bigger JT, Kleiger RE, Fleiss JL, Rolnitzky LM, Steinman RC, Miller JP (1988) Components of heart rate variability measured during healing of acute myocardial infarction. Am J Cardiol 61: 208–215.PubMedCrossRefGoogle Scholar
  13. 13.
    Huikuri HV, Koistinen J, Yli-Mäyry S et al. (1995) Impaired low-frequency oscillations of heart rate in patients with prior acute myocardial infarction and life-theatening arrhythmias. Am J Cardiol 76: 56–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Ahmed MW, Kadish AH, Parker MA, Goldberger J J (1994) Effect of physiologic and pharma-cologic adrenergic stimulation on heart rate variability. J Am Coll Cardiol 24: 1082–1090.PubMedCrossRefGoogle Scholar
  15. 15.
    Mølgaard H, Åblad B, Huikuri HV, Axenborg J, Björkman JA, Olsson G (1996) Influence of sympathetic neural activity on indexes of vagal as measured by heart rate variability. Evidence for independence of the coefficient of variance, submitted.Google Scholar
  16. 16.
    Mølgaard H, Michley H, Pless P, Bjerregaard P, Møller M (1993) Effects of metoprolol on heart rate variability in survivors of acute myocardial infarction. Am J Cardiol 71: 1357–1359.PubMedCrossRefGoogle Scholar
  17. 17.
    Cook JR, Bigger JTJ, Kleiger RE, Fleiss JL, Steinman RC, Rolnitzky LM (1991) Effect of atenolol and diltiazem on heart period variability in normal persons. J Am Coll Cardiol 17: 480–484.PubMedCrossRefGoogle Scholar
  18. 18.
    Niemelä MJ, Airaksinen KEJ, Huikuri HV (1994) Effect of ß-blockade on heart rate variability in patients with coronary artery disease. J Am Coll Cardiol 23: 1370–1377.PubMedCrossRefGoogle Scholar
  19. 19.
    Sandrone G, Mortara A, Torzillo D, La Rovere MT, Malliani A, Lombardi F (1994) Effects of ß-blockers (atenolol or metoprolol) on heart rate variability after myocardial infarction. Am J Cardiol 74: 340–345.PubMedCrossRefGoogle Scholar
  20. 20.
    Åblad B, Bjurö T, Björkman J-A (1991) Role of central nervous ß-adrenoceptors in the prevention of ventricular fibrillation through augmentation of cardiac vagal tone. J Am Coll Cardiol 17: 165A.CrossRefGoogle Scholar
  21. 21.
    Åblad B, Forshult E, Olsson G (1992) Increased cardiac vagal tone by central nervous ß-blockade in conscious pigs during CNS arousal. J Am Coll Cardiol 19: 251A.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • H. Mølgaard

There are no affiliations available

Personalised recommendations