Skip to main content

Stimulation of Exocytosis in Cultured Cerebellar Granule Cells by Electrical Field Stimulation

  • Conference paper

Part of the book series: NATO ASI Series ((ASIH,volume 100))

Abstract

External excitatory stimuli are required in order to evoke neurotransmitter release from cultured neurones. Traditionally, chemical stimuli have been employed to mimic synaptic input, with elevated KCl being the most widely used method to depolarize the plasma membrane. However, KCl stimulation has disadvantages in that the plasma membrane of the preparation is permanently clamped in a depolarized state allowing no repolarization to take place. In addition by definition, no modulation of K+ channels are able to be studied by this technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agoston DV, Lisziewicz J (1989) Calcium uptake and protein phosphorylation in myenteric neurons, like the release of vasoactive intestinal polypeptide and acetylcholine, are frequency dependent. J Neurochem 52: 1637–1640.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez de Toledo G, Fernandez Chacon R, Fernandez JM (1993) Release of secretory products during transient vesicle fusion [see comments]. Nature 363:554–558.

    Article  PubMed  CAS  Google Scholar 

  • Beani L, Bianchi C, Antonelli T, Calo G, Morari M, Ferioli V, Gaist G (1992) Comparison of [3H]choline and D-[3H]aspartate efflux from guinea pig and human neocortex. J Neurochem 58:1454–1459.

    Article  PubMed  CAS  Google Scholar 

  • Beani L, Tomasini C, Govoni BM, Bianchi C (1994) Fluorimetric determination of electrically evoked increase in intracellular calcium in cultured cerebellar granule cells. J Neurosci Methods 51:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Belhage B, Rehder V, Hansen GH, Kater SB, Schousboe A (1992) 3H-D-aspartate release from cerebellar granule neurons is differentially regulated by glutamate and K-stimulation. J Neurosci Res 33:436–444.

    Article  PubMed  CAS  Google Scholar 

  • Betz WJ, Mao F, Bewick GS (1992) Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J Neurosci 12:363–375.

    PubMed  CAS  Google Scholar 

  • Betz WJ, Bewick GS (1992) Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255:200–202.

    Article  PubMed  CAS  Google Scholar 

  • Bianchi C, Beani L, Antonelli T, Vedovato M, Calo G, Tomasini C (1992) A simple method for electrical field stimulation of cultured granule cells. J Neurosci Methods 45:175–182.

    Article  PubMed  CAS  Google Scholar 

  • Bosley TM, Woodhams PL, Gordon RD, Balazs R (1983) Effects of anoxia on the stimulated release of amino acid neurotransmitters in the cerebellum in vitro. J Neurochem 40:189–201.

    Article  PubMed  CAS  Google Scholar 

  • Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animals cells and plants cells. Biochemistry 85:7972–7976.

    CAS  Google Scholar 

  • Burke SP, Adams ME, Taylor CP (1993) Inhibition of endogenous glutamate release from hippocampal tissue by Ca2+ channel toxins. Eur J Pharmacol 238:383–386.

    Article  PubMed  CAS  Google Scholar 

  • Burke SP, Nadler JV (1988) Regulation of glutamate and aspartate release from slices of the hippocampal CA1 area: effects of adenosine and baclofen. J Neurochem 51:1541–1551.

    Article  PubMed  CAS  Google Scholar 

  • Burke SP, Nadler JV (1989) Effects of glucose deficiency on glutamate/aspartate release and excitatory synaptic responses in the hippocampal CA1 area in vitro. Brain Res 500:333–342.

    Article  PubMed  CAS  Google Scholar 

  • Carlson MD, Kish PE, Ueda T (1989) Characterization of the solubilized and reconstituted ATP-dependent vesicular glutamate uptake system. J Biol Chem 264:7369–7376.

    PubMed  CAS  Google Scholar 

  • Collins GG, Anson J, Kelly EP (1982) Baclofen: effects on evoked field potentials and amino acid neurotransmitter release in the rat olfactory cortex slice. Brain Res 238:371–383.

    Article  PubMed  CAS  Google Scholar 

  • Collins GG (1993) Actions of agonists of metabotropic glutamate receptors on synaptic transmission and transmitter release in the olfactory cortex. Br J Pharmacol 108:422–430.

    PubMed  CAS  Google Scholar 

  • Corradetti R, Lo Conte G, Moroni F, Passani MB, Pepeu G (1984) Adenosine decreases aspartate and glutamate release from rat hippocampal slices. Eur J Pharmacol 104:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Cousin MA, Nicholls DG, Pocock JM (1993) Flunarizine inhibits both calcium-dependent and -independent release of glutamate from synaptosomes and cultured neurones. Brain Res 606:227–236.

    Article  PubMed  CAS  Google Scholar 

  • Cousin MA, Held B, Nicholls DG (1995a) Selective neurite calcium responses in cerebellar granule cells during field stimulation. Eur J Neurosci 17:2379–2388.

    Article  Google Scholar 

  • Cousin MA, Pocock JM, Nicholls DG (1995b) Intracellular free calcium responses in electrically-stimulated cerebellar granule cells. Biochem Soc Trans 23:648–652.

    PubMed  CAS  Google Scholar 

  • Cousin MA, Nicholls DG, Pocock JM (1995c) Modulation of ion gradients and glutamate release in cultured cerebellar granule cells by ouabain. J Neurochem 64:2097–2104.

    Article  PubMed  CAS  Google Scholar 

  • De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. J Neurophysiol 71:401–419.

    PubMed  Google Scholar 

  • Dolphin AC, Prestwich SA (1985) Pertussis toxin reverses adenosine inhibition of neuronal glutamate release. Nature 316:148–150.

    Article  PubMed  CAS  Google Scholar 

  • Dooley DJ, Lupp A, Hertting G (1987) Inhibition of central neurotransmitter release by omega-conotoxin GVIA, a peptide modulator of the N-type voltage-sensitive calcium channel. Naunyn Schmiedebergs Arch Pharmacol 336:467–470.

    Article  PubMed  CAS  Google Scholar 

  • Dooley DJ, Lupp A, Hertting G, Osswald H (1988) Omega-conotoxin GVIA and pharmacological modulation of hippocampal noradrenaline release. Eur J Pharmacol 148:261–267.

    Article  PubMed  CAS  Google Scholar 

  • Fleck MW, Henze DA, Barrionuevo G, Palmer AM (1993) Aspartate and glutamate mediate excitatory synaptic transmission in area CA1 of the hippocampus. J Neurosci 13:3944–3955.

    PubMed  CAS  Google Scholar 

  • Flint RS, Rea MA, McBride WJ (1981) In vitro release of endogenous amino acids from granule cell-, stellate cell-, and climbing fiber-deficient cerebella. J Neurochem 37:1425–1430.

    Article  PubMed  CAS  Google Scholar 

  • Floor E, Leventhal PS, Schaeffer SF (1990) Partial purification and characterization of the vacuolar H(+)-ATPase of mammalian synaptic vesicles. J Neurochem 55:1663–1670.

    Article  PubMed  CAS  Google Scholar 

  • Franck J, Brodin E, Fried G (1993) Differential release of endogenous 5-hydroxytryptamine, substance P, and neurokinin A from rat ventral spinal cord in response to electrical stimulation. J Neurochem 61:704–711.

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Hu PS (1993) Effect of an intracellular calcium chelator on the regulation of electrically evoked [3H]-noradrenaline release from rat hippocampal slices. Br J Pharmacol 108:126–131.

    PubMed  CAS  Google Scholar 

  • Gabbiani F, Midtgaard J, Knöpfel T (1994) Synaptic integration in a model of cerebellar granule cells. J Neurophysiol 72:999–1009.

    PubMed  CAS  Google Scholar 

  • Galarreta M, Solis JM, Menendez N, Conejero C, Martin del Rio R (1993) Nicotinamide adenine dinucleotides mimic adenosine inhibition on synaptic transmission by decreasing glutamate release in rat hippocampal slices. Neurosci Lett 159:55–58.

    Article  PubMed  CAS  Google Scholar 

  • Gallo V, Levi G (1982) Selective release of glutamate from cerebellar granule cells differentiating in culture. Proc Natl Acad Sci (USA) 79:7919–7923.

    Article  CAS  Google Scholar 

  • Gaur S, Newcomb R, Rivnay B, Bell JR, Yamashiro D, Ramachandran J, Miljanich GP (1994) Calcium channel antagonist peptides define several components of transmitter release in the hippocampus. Neuropharmacol 33:1211–1219.

    Article  CAS  Google Scholar 

  • Henkel AW, Lübke J, Betz WJ (1996) FM1–43 dye ultrastructural localization in and release from frog motor nerve terminals. Proc Natl Acad Sci USA 93:1918–1923.

    Article  PubMed  CAS  Google Scholar 

  • Herdon H, Nahorski SR (1989) Investigations of the roles of dihydropyridine and omega-conotoxin-sensitive calcium channels in mediating depolarisation-evoked endogenous dopamine release from striatal slices. Naunyn Schmiedebergs Arch Pharmacol 340:36–40.

    Article  PubMed  CAS  Google Scholar 

  • Holz GG, Dunlap K, Kream K (1988) Characterization of the electrically evoked release of substance P from dorsal root ganglion neurons: methods and dihydropyridine sensitivity. J Neurosci 8:463–471.

    PubMed  CAS  Google Scholar 

  • Huston E, Cullen JP, Burley JR, Dolphin AC (1995) The involvement of multiple calcium channel sub-types in glutamate release from cerebellar granule cells and its modulation by GABAB receptor activation. Neuroscience 68: 465–478.

    Article  PubMed  CAS  Google Scholar 

  • Israel M, Lesbats B, Bruner J (1993) Glutamate and acetylcholine release from cholinergic nerve terminals, a calcium control of the specificity of the release mechanism. Neurochem Int 22:53–58.

    Article  PubMed  CAS  Google Scholar 

  • Kangrga I, Randic M (1990) Tachykinins and calcitonin gene-related peptide enhance release of endogenous glutamate and aspartate from the rat spinal dorsal horn slice. J Neurosci 10:2026–2038.

    PubMed  CAS  Google Scholar 

  • Keith RA, Mangano TJ, DeFeo PA, Ernst GE, Warawa EJ (1994) Differential inhibition of neuronal calcium entry and [3H]-D-aspartate release by the quaternary derivatives of verapamil and emopamil. Br J Pharmacol 113:379–384.

    PubMed  CAS  Google Scholar 

  • Kennedy RT, Jones SR, Wightman RM (1992) Dynamic observation of dopamine autoreceptor effects in rat striatal slices. J Neurochem 59:449–455.

    Article  PubMed  CAS  Google Scholar 

  • Kihara M, Misu Y, Kubo T (1989) Release by electrical field stimulation of glutamate, gamma-aminobutyric acid, and other amino acids from slices of the rat medulla oblongata. J Neurochem 52:261–267.

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Yamanishi Y, Hanada T, Kagaya T, Kuwada M, Watanabe T, Katayama K, Nishizawa Y (1995) Involvement of P-type calcium channels in high potassium-elicited release of neurotransmitters from rat brain slices. Neurosci 66:609–615.

    Article  CAS  Google Scholar 

  • Kingsbury A, Gallo V, Balázs R (1988) Stimulus-coupled release of amino acids from cerebellar granule cells inculture. Brain Res 448:46–52.

    Article  PubMed  CAS  Google Scholar 

  • Levi G, Gallo V (1986) Release studies related to the neurotransmitter role of glutamate in the cerebellum: an overview. Neurochem Res 11:1627–42.

    Article  PubMed  CAS  Google Scholar 

  • Li L, Chin LS, Shupliakov O, Brodin L, Sihra TS, Hvalby O, Jensen V, Zheng D, McNamara JO, Greengard P, Andersen P (1995) Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Proc Natl Acad Sci USA 92:9235–9239.

    Article  PubMed  CAS  Google Scholar 

  • Maura G, Carbone R, Raiteri M (1989) Aspartate-releasing nerve terminals in rat striatum possess D-2 dopamine receptors mediating inhibition of release. J Pharmacol Exp Ther 251:1142–1146.

    PubMed  CAS  Google Scholar 

  • Maura G, Barzizza A, Folghera S, Raiteri M (1991) Release of endogenous aspartate from rat cerebellum slices and synaptosomes — inhibition mediated by a 5-HT2 receptor and by a 5-HT1 receptor of a possibly novel subtype. Naunyn-Schmied Arch Pharmacol 343:229–236.

    Article  CAS  Google Scholar 

  • Maycox PR, Deckwerth T, Hell JW, Jahn R (1988) Glutamate uptake by brain synaptic vesicles. J Biol Chem 263:15423–15428.

    PubMed  CAS  Google Scholar 

  • McMahon HT, Foran P, Dolly JO, Verhage M, Wiegant VM, Nicholls DG (1992) Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action. J Biol Chem 267:21338–21343.

    PubMed  CAS  Google Scholar 

  • McMahon HT, Nicholls DG (1990) Glutamine and aspartate loading of synaptosomes: A reevaluation of effects on calcium-dependent excitatory amino acid release. J Neurochem 54:373–380.

    Article  PubMed  CAS  Google Scholar 

  • Monck JR, Fernandez JM (1994) The exocytotic fusion pore and neurotransmitter release. Neuron 12:707–716.

    Article  PubMed  CAS  Google Scholar 

  • Moriyama Y, Futai M (1990) H(+)-ATPase, a primary pump for accumulation of neurotransmitters, is a major constituent of brain synaptic vesicles. Biochem Biophys Res Commun 173:443–448.

    Article  PubMed  CAS  Google Scholar 

  • Naito S, Ueda T (1985) Characterization of glutamate uptake into synaptic vesicles. J Neurochem 44:99–109.

    Article  PubMed  CAS  Google Scholar 

  • Neville LF, Arvin B, Roberts PJ (1987) Is D-aspartate a useful tool for assessing excitatory amino acid neurotransmitter function? Biochem Soc Trans 16:315–316.

    Google Scholar 

  • Palmer AM, Reiter CT (1994) Comparison of the superfused efflux of preaccumulated D-[3H]aspartate and endogenous L-aspartate and L-glutamate from rat cerebrocortical minislices. Neurochem Int 25:441–450.

    Article  PubMed  CAS  Google Scholar 

  • Pende M, Lanza M, Bonanno G, Raiteri M (1993) Release of endogenous glutamic and aspartic acids from cerebrocortex synaptosomes and its modulation through activation of a gamma-aminobutyric acidB (GABAB) receptor subtype. Brain Res 604:325–330.

    Article  PubMed  CAS  Google Scholar 

  • Pieribone VA, Shupliakov O, Brodin L, Hilfiker-Rothenfluh S, Czernik AJ, Greengard P (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375:493–497.

    Article  PubMed  CAS  Google Scholar 

  • Pocock JM, Cousin MA, Nicholls DG (1993) The calcium channel coupled to glutamate exocytosis from cerebellar granule cells is inhibited by the spider toxin Aga-GI. Neuropharmacol 32:1185–1194.

    Article  CAS  Google Scholar 

  • Poli A, Contestabile A, Migani P, Rossi L, Rondelli C, Virgili M, Bissoli R, Barnabei O (1985) Kainic acid differentially affects the synaptosomal release of endogenous and exogenous amino acidic neurotransmitters. J Neurochem 45:1677–1686.

    Article  PubMed  CAS  Google Scholar 

  • Poli A, Lucchi R, Vibio M, Barnabei O (1991) Adenosine and glutamate modulate each other’s release from rat hippocampal synaptosomes. J Neurochem 57:298–306.

    Article  PubMed  CAS  Google Scholar 

  • Prado MAM, Gomez MV, Collier B. (1993) Mobilization of a vesamicol-insensitive pool of acetylcholine from a sympathetic neuron by ouabain. J Neurochem 61: 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Raiteri M, Marchi M, Costi A, Volpe G (1990) Endogenous aspartate release in the rat hippocampus is inhibited by M2 ‘cardiac’ muscarinic receptors. Eur J Pharmacol 177:181–187.

    Article  PubMed  CAS  Google Scholar 

  • Reuter H (1995) Measurements of exocytosis from single presynaptic nerve terminals reveal heterogeneous inhibition by Ca2+-channel blockers. Neuron 14:773–779.

    Article  PubMed  CAS  Google Scholar 

  • Rogers KL, Philibert RA, Duttton GR (1991) K-stimulated amino acid release from cultured cerebellar neurons: comparison of static and dynamic stimulation paradigms. Neurochem Res 16:899–904.

    Article  PubMed  CAS  Google Scholar 

  • Rosahl TW, Spillane D, Missler M, Herz J, Selig DK, Wolff JR, Hammer RE, Malenka RC, Südhof TC (1995) Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375:488–493.

    Article  PubMed  CAS  Google Scholar 

  • Ryan TA, Reuter H, Wendland B, Schweizer FE, Tsien RW, Smith SJ (1993) The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11:713–724.

    Article  PubMed  CAS  Google Scholar 

  • Ryan TA, Smith SJ (1995) Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron 14:983–989.

    Article  PubMed  CAS  Google Scholar 

  • Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino-de-Laureto P, Dasgupta BR, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz DD, Malik KU (1991) Mechanism of neurotransmitter release elicited by the preferential alpha 1-adrenergic receptor agonist phenylephrine in superfused superior cervical ganglion cells in culture. J Neurochem 57:831–838.

    Article  PubMed  CAS  Google Scholar 

  • Shioi J, Ueda T (1990) Artificially imposed electrical potentials drive L-glutamate uptake into synaptic vesicles of bovine cerebral cortex. Biochem J 267:63–68.

    PubMed  CAS  Google Scholar 

  • Simonato M, Bregola G, Muzzolini A, Bianchi C, Beani L (1993) Characterization of the K-evoked 3H-D-aspartate outflow in the rat hippocampus in vitro. Neurochem Int 23:555–560.

    Article  PubMed  CAS  Google Scholar 

  • Smith CB, Betz WJ (1996) Simultanious independent measurement of endocytosis and exocytosis. Nature 380: 531–534.

    Article  PubMed  CAS  Google Scholar 

  • Szerb JC (1988) Changes in the relative amounts of aspartate and glutamate released and retained in hippocampal slices during stimulation. J Neurochem 50:219–224.

    Article  PubMed  CAS  Google Scholar 

  • Terrian DM, Gannon RL, Rea MA (1990) Glutamate is the endogenous amino acid selectively released by rat hippocampal mossy fiber synaptosomes concomitantly with prodynorphin-derived peptides. Neurochem Res 15:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Van-Vliet BJ, Sebben M, Dumuis A, Gabrion J, Bockaert J, Pin JP (1989) Endogenous amino acid release from cultured cerebellar neuronal cells: effect of tetanus toxin on glutamate release. J Neurochem 52:1229–1239.

    Article  PubMed  CAS  Google Scholar 

  • Verhage M, McMahon HT, Ghijsen WEJM, Boomsma F, Wiegant V, Nicholls DG (1991) Differential release of amino acids, neuropeptides and catecholamines from nerve terminals. Neuron 6:517–524.

    Article  PubMed  CAS  Google Scholar 

  • Wakade AR, Wakade TD (1988) Comparison of transmitter release properties of embryonic sympathetic neurons growing in vivo and in vitro. Neurosci 27:1007–1019.

    Article  CAS  Google Scholar 

  • Wakade TD, Bhave SV, Bhave A, Przywara DA, Wakade AR (1990) Ca2+ mobilized by caffeine from the inositol 1,4,5-trisphosphate-insensitive pool of Ca2+ in somatic regions of sympathetic neurons does not evoke [3H]norepinephrine release. J Neurochem 55:1806–1809.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Floor E (1994) Dynamic storage of glutamate in rat brain synaptic vesicles. Neurosci Lett 180:175–178.

    Article  PubMed  CAS  Google Scholar 

  • Wessler I, Dooley DJ, Werhand J, Schlemmer F (1990) Differential effects of calcium channel antagonists (omega-conotoxin GVIA, nifedipine, verapamil) on the electrically-evoked release of [3H] acetylcholine from the myenteric plexus, phrenic nerve and neocortex of rats. Naunyn Schmiedebergs Arch Pharmacol 341:288–294.

    PubMed  CAS  Google Scholar 

  • Wessler I, Dooley DJ, Lohr B (1995) P-type Ca2+ channels trigger stimulus-evoked [3H]acetylcholine release from mammalian motor endplates. Eur J Pharmacol 278:83–86.

    Article  PubMed  CAS  Google Scholar 

  • Westergaard N, Fosmark H, Schousboe A (1991) Metabolism and release of glutamate in cerebellar granule cells cocultured with astrocytes from cerebellum or cerebral cortex. J Neurochem 56:59–66.

    Article  PubMed  CAS  Google Scholar 

  • Wichmann T, Limberger N, Starke K (1989) Release and modulation of release of serotonin in rabbit superior colliculus. Neurosci 32:141–151.

    Article  CAS  Google Scholar 

  • Zhou M, Peterson CM, Lu Y-B, Nadler JV (1995) Release of glutamate and aspartate from CA1 synaptosomes: selective modulation of aspartate release by ionotropic glutamate receptor ligands. J Neurochem 64: 1556–1566.

    Article  PubMed  CAS  Google Scholar 

  • Zhu XZ, Chuang DM (1987) Modulation of calcium uptake and D-aspartate release by GABAB receptors in cultured cerebellar granule cells. Eur J Pharmacol 141:401–408.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cousin, M.A., Hurst, H., Held, B., Nicholls, D.G. (1997). Stimulation of Exocytosis in Cultured Cerebellar Granule Cells by Electrical Field Stimulation. In: Pöğün, Ş. (eds) Neutrotransmitter Release and Uptake. NATO ASI Series, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60704-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60704-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64517-4

  • Online ISBN: 978-3-642-60704-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics