Skip to main content

Ultrafast Relaxation of Excitons and Photopolymerization Process in Fullerenes

  • Conference paper

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 124))

Abstract

We have studied relaxation dynamics of photoexcitation and initial processes of the photopolymerization in C60 molecules and solids by means of time- resolved spectroscopies. The femtosecond pump and probe spectroscopy shows that the photoexcitations in C60 solution are relaxed into the triplet state in 900 ps, while for C60 solid the fast relaxation occurs in 1 ps. The fast relaxation of charge- transfer (CT) excitons being characteristic of the C60 solid is interpreted in terms of the self-trapping of CT excitons in the simple cubic lattice. In the luminescence spectrum of the pristine crystal, we observe luminescence due to the S1-S0 transition which is partially allowed by the Hertzberg-Teller mechanism and luminescence originating from the self-trapped CT excitons. From the comparison of the similar spectral features observed for the pristine and photopolymerized crystals we discuss configurations of the photoinduced dimer and self-trapped CT exciton, and propose that the self-trapped CT exciton is a precursor to the photopolymerization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature 318, 162(1985).

    Article  ADS  Google Scholar 

  2. S. Saitoh and A. Oshiyama, Phys. Rev. Lett. 66, 2637 (1991).

    Article  ADS  Google Scholar 

  3. Q.-M. Zhang, J.-Y. Yi, J. Bernholc, Phys. Rev. Lett. 66, 2633 (1991).

    Article  ADS  Google Scholar 

  4. C. Reber, L. Yee, J. Mckiernan, J. I. Zink, R. S. Williams, W. M. Tang, D. A. A. Ohlberg, R. L. Whetten and F. Diederich, J. Phys. Chem., p5, 2127 (1991).

    Article  Google Scholar 

  5. A. F. Hebard, R. C. Haddon, R. M. Fleming and A. R. Kotan, Appl. Phys. Lett. 59,2109(1991).

    Article  ADS  Google Scholar 

  6. A. Nakamura, M. Ichida, T. Yajima, H. Shinohara and Y. Saitoh, J. Lumin. 66&67, 383 (1996).

    Google Scholar 

  7. A. M. Rao, P. Z. Zhou, Kai-An Wang, G. T. Hager, J. M. Holden, Ying Wang, W-T. Lee, Xiang-Xie Bi, P. C. Eklund, D. S. Cornett, M. A. Duncan and I. J. Amster, Science 259, 955 (1993).

    ADS  Google Scholar 

  8. P. Z. Zhou, Z-H. Dong, A. M. Rao and P. C. Eklund, Chem. Phys. Lett. 211, 337 (1993).

    Article  ADS  Google Scholar 

  9. W. Kratschmer, L. D. Lamb, K. Forstiropoulos and D. R. Huffinan, Nature 347, 354 (1990).

    Article  ADS  Google Scholar 

  10. S. Leach, M. Vervloet, A. Despre, E. Breheret, J. P. Hare, T. J. Dennis, H. W. Kroto, R. Taylor and D. R. M. Walton, Chem. Phys. 160, 451 (1992).

    Article  Google Scholar 

  11. T. Tsubo and K. Nasu, J. Phys. Soc. Jpn. 63, 2401 (1994).

    Article  ADS  Google Scholar 

  12. R. V. Besasson, T. Hill, C. Lambert, E. J. Land, S. Leach and T. G. Truscott, Chem. Phys. Lett. 201, 326 (1993).

    Article  ADS  Google Scholar 

  13. R. j. Sension, C. M. Philiips, A. Z. Szarka, W. J. Ramanow, A. R. McGhie, J. P. McCauley, Jr., A. B. Smith III and R. M. Hochstrasser, J. Phys. Chem. 95, 6075 (1991).

    Article  Google Scholar 

  14. A. Nakamura, T. Tokizaki, S. Iwai, Y. L. Lee, Y. Saitoh and H. Shinohara, Proc. Int. Conf. on the Physics of Semiconductors, Beijin, 1992, (World Scientific, 1992) p. 1828.

    Google Scholar 

  15. S. Huant, J. B. Robert, G. Chouteau, P. Bernier, C. Fabre and A. Rassat, Phys. Rev. Lett. 69, 2666 (1992). and S. A. FitzGerald and A. J. Sievers, Phys. Rev. Lett. 70,3175 (1993).

    Article  ADS  Google Scholar 

  16. M. Matus, H. Kuzmany, E. Sohmen, Phys. Rev. Lett. 68, 2822 (1992).

    Article  ADS  Google Scholar 

  17. W. Z. Wang, C. L. Wang, Z. B. Su andL. Yu, Phys. Rev. Lett. 3550 (1994).

    Google Scholar 

  18. M. Ichida, M. Sakai, T. Yajima and A. Nakamura, Progress in Crystal Growth & Characterization on Materials, in press.

    Google Scholar 

  19. A. Nakamura, M. Ichida and T. Yajima, Progress in Crystal Growth & Characterization on Materials, in press.

    Google Scholar 

  20. P. A. Heiney, J. E. Fischer, A. R. McGhie, W. J. Romanow, A. M. Denenstein, J. P. McCanley,Jr., and A. B. Smith, III, Phys. Rev. Lett. 66, 2911 (1991).

    Article  ADS  Google Scholar 

  21. S. Iwai, T. Tokizaki, A. Nakamura, T. Shibata, K. Tanimura, N. Itoh and A. Shluger, Phy. Rev. Lett. 76, 1691 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakamura, A., Ichida, M., Sakai, M., Yajima, T. (1997). Ultrafast Relaxation of Excitons and Photopolymerization Process in Fullerenes. In: Nasu, K. (eds) Relaxations of Excited States and Photo-Induced Structural Phase Transitions. Springer Series in Solid-State Sciences, vol 124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60702-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60702-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64516-7

  • Online ISBN: 978-3-642-60702-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics