Skip to main content

Theoretical Studies of the Models of Self-Trapped Excitons and Holes in Ionic Crystals

  • Conference paper
  • 263 Accesses

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 124))

Abstract

The recent progress and remaining problems in the understanding of the mechanisms of self-trapping of excitons and holes and of their atomic structure in alkali halides are discussed in conjunction with recent spectroscopic experiments. The results are based on many-electron calculations using an embedded molecular cluster model and including the electron correlation. A model is proposed for the initial stages of the hole self-trapping in KI which includes its initial trapping in the one-centre state, which then transforms into the two-centre state, and finally into the V K -centre. It is shown that the perturbations by charged and neutral hole defects induce electronic states in the valence band which are responsible for optical transitions in these centres in UV region. The electron correlation is shown to stabilise the on-centre configuration of the STE in NaCl.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Song and R. T. Williams, Self-Trapped Excitons (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  2. S. Iwai, T. Tokizaki, A. Nakamura, et al., J. Luminescence 60&61, 720 (1994).

    Article  Google Scholar 

  3. S. Iwai, T. Tokizaki, A. Nakamura, et al, Phys. Rev. Lett. 76, 1691 (1996).

    Article  ADS  Google Scholar 

  4. A. L. Shluger and J. D. Gale, Phys. Rev. B (at press) (1996).

    Google Scholar 

  5. I. Benjamin, P. F. Barbara, B. J. Gertner, et al, J. Phys. Chem. 99, 7557 (1995).

    Article  Google Scholar 

  6. A. L. Shluger, V. E. Puchin, T. Suzuki, et al, Phys. Rev. B 52, 4017 (1995).

    Article  ADS  Google Scholar 

  7. V. E. Puchin, A. L. Shluger, and N. Itoh, Phys. Rev. B 52, 6254 (1995).

    Article  ADS  Google Scholar 

  8. J. M. Vail, R. Pandey, and A. B. Kunz, Rev. Solid State Sci. 5, 241 (1991).

    Google Scholar 

  9. A. L. Shluger, A. H. Harker, V. E. Puchin, et al., Modelling Simul. Mater. Sci. Eng. 1,673 (1993).

    Article  ADS  Google Scholar 

  10. L. N. Kantorovich, J. Phys. C: Solid State Phys. 21, 5041 (1988).

    Article  ADS  Google Scholar 

  11. These techniques have been reviewed in a special issue: C. R. A. Catlow and A. M. Stoneham (ed.) J. Chem. Soc. Faraday. Trans. II 85 (1989).

    Google Scholar 

  12. J. A. Pople, R. Seeger, and R. Krishnan, Int. J. Quant. Chem. Symp. 11, 149 (1977).

    Article  Google Scholar 

  13. V. E. Puchin, A. L. Shluger, K. Tanimura, et al, Phys. Rev. B 47, 6226 (1993).

    Article  ADS  Google Scholar 

  14. L. Kantorovich, A. Stashans, E. Kotomin, et al., Int. J. Quant. Chem. 52, 1177 (1994).

    Article  Google Scholar 

  15. A. M. Stoneham, Theory of Defects in Solids (Oxford University Press, Oxford, 1985).

    Google Scholar 

  16. J. B. Foresman, M. Head-Gordon, and J. A. Pople, J. Phys. Chem. 96, 135 (1992).

    Article  Google Scholar 

  17. R. Bianco and J. T. Hynes, J. Chem. Phys. 102, 7885 (1995).

    Article  ADS  Google Scholar 

  18. S. John, C. Soukoulis, M. H. Cohen, et al, Phys. Rev. Lett. 57, 1777 (1986).

    Article  ADS  Google Scholar 

  19. H. Sumi, J. Phys. Soc. Japan 33, 327 (1972).

    Article  ADS  Google Scholar 

  20. K. Edamatsu, M. Sumita, S. Hirota, et al, Phys. Rev. B 47, 6747 (1993).

    Article  ADS  Google Scholar 

  21. T. Shibata, S. Iwai, T. Tokizaki, et al, Phys. Rev. B 49, 13255 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shluger, A.L. (1997). Theoretical Studies of the Models of Self-Trapped Excitons and Holes in Ionic Crystals. In: Nasu, K. (eds) Relaxations of Excited States and Photo-Induced Structural Phase Transitions. Springer Series in Solid-State Sciences, vol 124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60702-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60702-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64516-7

  • Online ISBN: 978-3-642-60702-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics