Skip to main content

Pathophysiology of VO2/DO2 in Sepsis

  • Chapter
Applied Cardiovascular Physiology

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 28))

Abstract

The high molar demand for oxygen (02) compared to other metabolic substrates implies that tissues deplete blood of 02 much sooner than of these other substrates. Under normal resting conditions, tissue 02 demand rather than tissue 02 supply (DO2) determines the rate of 02 uptake (VO2). When blood carries less than the normal amount of 02 or when blood flow is reduced, DO2 is reduced and compensatory adjustments occur in an attempt to satisfy the 02 requirements of peripheral tissues. As DO2 is gradually reduced, 02 consumption (VO2) is maintained by increases in the 02 extraction ratio (ER02 = VO2/DO2), until a critical point at which VO2 falls with further declines in DO2. At this critical point, tissues shift toward a chemically reduced state with elaboration of reduced substrate forms such as lactate. It has been proposed that increased ER02 is a consequence of regulation of the circulation and the result of the simultaneous activation of both central and local factors. Central factor induces a regional redistribution of blood flow among tissues via sympathetic vasoconstrictor tone while local factor or autoregulation induces an increase in the density of perfused capillaries within tissues via metabolic vasodilator tone. Local autoregulatory processes include local release and action of vasodilating substances. An inability to regulate blood flow distribution, between and within tissues, could result in hyperperfusion of some tissue beds at the expense of other hypoperfused areas resulting in 02 extraction defect as seen in sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Schlichtig R, Kramer DJ, Pinsky MR (1991) Flow redistribution during progressive hemorrhage is a determinant of critical O2 delivery. J Appl Physiol 70:169–178.

    PubMed  CAS  Google Scholar 

  • Schlichtig R (1993) O2 uptake, critical O2 delivery, and tissue wellness. In: Pinsky MR, Dhainaut JF (eds) Pathophysiologic foundations of critical care. Williams and Wilkins, Baltimore, pp 119–139.

    Google Scholar 

  • Nelson DP, King CE, Dodd SL, Schumacker PT, Cain SM (1987) Systemic and intestinal limits of O2 extraction in the dog. J Appi Physiol 63:387–394.

    CAS  Google Scholar 

  • Nelson DP, Samsel RW, Wood LDH, Schumacker PT (1988) Pathological supply dependence of systemic and intestinal O2 uptake during endotoxemia. J Appl Physiol 64:2410–2419.

    PubMed  CAS  Google Scholar 

  • Ward ME, Chang H, Erice F, Hussain SNA (1994) Systemic and diaphragmatic oxygen delivery-consumption relationships during hemorrhage. J Appi Physiol 77:653–659.

    CAS  Google Scholar 

  • Samsel RW, Nelson DP, Sanders WM, Wood LDH, Schumacker PT (1988) Effect of endotoxin on systemic and skeletal muscle O2 extraction. J Appi Physiol 65:1377–1382.

    CAS  Google Scholar 

  • Bredle DL, Samsel RW, Schumacker PT, Cain SM (1989) Critical O2 delivery to skeletal muscle at high and low PO2 in endotoxemic dogs. J Appi Physiol 66:2553–2558.

    CAS  Google Scholar 

  • Cain SM (1978) Effects of time and vasoconstrictor tone on O2 extraction during hypoxic hypoxia. J Appi Physiol 45:219–278.

    CAS  Google Scholar 

  • Pinsky MR (1995) Regional blood flow distribution. In: Pinsky MR, Dhainaut JF, Artigas A (eds) The splanchnic circulation: no longer a silent partner. Springer-Verlag. Berlin, pp 1–13.

    Google Scholar 

  • Granger HJ, Goodman AH, Cook Billy H (1975) Metabolic models of microcirculatory regulation. Federation Proc 34:2O25–2030.

    CAS  Google Scholar 

  • Samsel RW, Schumacker PT (1992) Pathologic supply dependence of oxygen utilization. In: Principles of critical care medicine. Williams and Wilkins, Baltimore, pp 667–678.

    Google Scholar 

  • Maginiss LA, Connolly H, Samsel RW, Schumacker PT (1994) Adrenergic vasoconstriction augments tissue O2 extraction during reductions in O2 delivery. J Appi Physiol 76:1454–1461.

    Google Scholar 

  • Samsel RW, Schumacker PT (1994) Systemic hemorrhage augments local O2 extraction. J Appi Physiol 77:2291–2298.

    CAS  Google Scholar 

  • Cain SM, Chapter CK (1981) Effects of norepinephrine and alpha-block on O2 uptake and blood flow in dog hindlimb. J Appi Physiol 51:1245–1250.

    CAS  Google Scholar 

  • Skinner NS, Costin JC (1968) Tissue metabolites and regulation of local blood flow. Fed Proc 27:1426–1429.

    PubMed  CAS  Google Scholar 

  • Pohl U (1990) Endothelial cells as a part of a vascular oxygen-sensing system: hypoxia-induced release of autacoids. Experientia 46:1175–1179.

    Article  PubMed  CAS  Google Scholar 

  • Vanhoutte PM (1989) Endothelium and control of vascular function. State of the art lecture. Hypertension 13:658–667.

    CAS  Google Scholar 

  • Pohl U, Busse R (1989) Hypoxia stimulates release of endothelium-derived relaxant factor. Am J Physiol 956:H1595–1600.

    Google Scholar 

  • Michiels C, Arnould T, Dieu M, Remacle J (1993) Stimulation of prostaglandin synthesis by human endothelial cells exposed to hypoxia. Am J Physiol 264: C866–C874.

    PubMed  CAS  Google Scholar 

  • Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT (1989) Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science Wash DC 245:177–180.

    Article  CAS  Google Scholar 

  • Daut J, Maier-Rudolph W, Von Beckerath N, Mehrke G, Günther K, Goedel-Meinen L (1990) Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science Wash DC 247:1341–1344.

    Article  CAS  Google Scholar 

  • Vallet B, Curtis SE, Guery B, Mangalaboyi J, Menager P, Cain SM, Chopin C, Dupuis BA (1995) ATP-sensitive K + channel blockade impairs oxygen extraction during progressive ischemia in pig hindlimb. J Appi Physiol 79:2035–2042.

    CAS  Google Scholar 

  • Curtis SE, Vallet B, Winn MJ, Caufield JB, Cain SM (1995) Ablation of the vascular endothelium causes an oxygen extraction defect in canine skeletal muscle. J Appi Physiol 79: 1352–1360.

    Google Scholar 

  • Nelson DP, Bever C, Samsel RW, Wood L, Schumacker PT (1987) Pathological supply depen¬dence of O2 uptake during bacteremia in dogs. J Appl Physiol 63:1487–1492.

    PubMed  CAS  Google Scholar 

  • Van Lambalgen AA, Bronsveld W, Van den Bos GC, Thijs KG (1984) Distribution of cardiac output, oxygen consumption and lactate production in canine endotoxic shock. Cardiovasc Res 18:195–201.

    Article  PubMed  Google Scholar 

  • Breslow MJ, Miller CF, Parker SD, Walman AT, Traystman RJ (1987) Effect of vasopressors on organ blood flow during endotoxin shock in pigs. Am J Physiol 252: H291–300.

    PubMed  CAS  Google Scholar 

  • Carrol G, Synder J (1982) Hyperdynamic severe intravascular sepsis depends on fluid ad-ministration in cyonomolgus monkey. Am J Physiol 243:R131–141.

    Google Scholar 

  • Garrisson RN, Ratcliffe DJ, Fry DE (1980) Hepatocellular function and nutrient blood flow in experimental peritonitis. Surgery 92:713–719.

    Google Scholar 

  • Umans JG, Wylam ME, Samsel RW, Edwards J, Schumacker PT (1993) Effects of endotoxin in vivo on endothelial and smooth-muscle function in rabbit and rat aorta. Am Rev Repir Dis 148:1638–1645.

    Article  CAS  Google Scholar 

  • Wakabayashi I, Hatake K, Kakishita E, Nagai K (1987) Diminution of contractile response of the aorta from endotoxin-injected rats. Eur J Pharmacol 141:117–122.

    Article  PubMed  CAS  Google Scholar 

  • Mc Kenna TM (1988) Enhanced vascular effects of cyclic GMP in septic rat aorta. Am J Physiol 23:R436–R442.

    Google Scholar 

  • Julou-Schaeffer G, Gray GA, Fleming I, Schott C, Parratt JR, Stockt JC (1990) Loss of vascu¬lar responsiveness induced by endotoxin involves L-arginine pathway. Am J Physiol 259: H1038–H1043.

    PubMed  CAS  Google Scholar 

  • Parker JL, Keller RS, DeFily DV, Laughlin MH, Novotny MJ, Adams HR (1991) Coronary vas-cular smooth muscle function in E. coli endotoxemia in dogs. Am J Physiol 260: H832–H842.

    PubMed  CAS  Google Scholar 

  • Schumacker PT, Kazaglis J, Connolly HV, Samsel RW, O’Connor MF, Umans JG (1995) Systemic and gut oxygen extraction during endotoxemia: role of nitric oxide synthesis. Am J Respir Crit Care Med 151:107–115.

    PubMed  CAS  Google Scholar 

  • Vallet B, Curtis SE, Winn MJ, King CE, Chapler CK, Cain SM (1994) Hypoxic vasodilation does not require nitric oxide (EDRF/NO) synthesis. J Appl Physiol 76:1256–1261.

    Article  PubMed  CAS  Google Scholar 

  • Peterson DA, Peteron DC, Archer S, Weir EK (1992) The nonspecificity of specific nitric oxide synthase inhibitors. Biochem Biophys Res Commun 187:797–801.

    Article  PubMed  CAS  Google Scholar 

  • Winn MJ, Asante NK, Ku DD (1993) Vasomotor responses of canine arterial rings to NG-monomethyl-L-arginine and Nw-nitro L-arginine methyl ester. J Pharmacol Exp Ther 264: 265–270.

    PubMed  CAS  Google Scholar 

  • Winn MJ, Vallet B, Asante NK, Curtis SE, Cain SM (1993) Effects of NG-substituted arginines on coronary vascular function after endotoxin. J Appl Physiol 75:424–431.

    PubMed  CAS  Google Scholar 

  • Wright CE, Rees DD, Moneada S (1992) Protective and pathological roles of nitric oxide in endotoxin shock. Cardiovasc Res 26:48–57.

    Article  PubMed  CAS  Google Scholar 

  • Cobb JP, Natanson C, Quezado ZMN, Hoffman WD, Koev CA, Banks S, Correa R, Levi R, Elin RJ, Hosseini JM, Danner RL (1995) Differential hemodynamic effects of L-NMMA in endotoxemic and normal dogs. Am J Physiol 268: H1634–H1642.

    PubMed  CAS  Google Scholar 

  • Smith RE, Palmer RMJ, Moneada S (1991) Coronary vasodilation induced by endotoxin in the rabbit isolated perfused heart is nitric oxide-dependent and inhibited by dexametha-sone. Br J Pharmacol 140:5–6.

    Google Scholar 

  • Lübbe AS, Garrison RN, Cryer HM, Alsip NL, Harris PD (1992) EDRF as a possible mediator of sepsis-induced arteriolar dilation in skeletal muscle. Am J Physiol 262: H880–H887.

    PubMed  Google Scholar 

  • Schneider F, Schott C, Stoclet JC, Julou-Schaeffer G (1992) L-arginine induces relaxation of small mesenteric arteries from endotoxin-treated rats. Eur J Pharmacol 211:269–272.

    Article  PubMed  CAS  Google Scholar 

  • Lam C, Tyml K, Martin C, Sibbald W (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94:2077–2083.

    Article  PubMed  CAS  Google Scholar 

  • Landry DW, Oliver JA (1992) The ATP-sensitive K+ channel mediates hypotension in endo-toxemia and hypoxic lactic acidosis in dog. J Clin Invest 89:2071–2074.

    Article  PubMed  CAS  Google Scholar 

  • Bredle DL, Cain SM (1991) Systemic and muscle oxygen uptake/delivery after dopexamine infusion in endotoxic dogs. Crit Care Med 19:198–204.

    Article  PubMed  CAS  Google Scholar 

  • Vallet B, Lund N, Curtis SE, Kelly DR, Cain SM (1994) Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation.! Appi Physiol 76:793–800.

    CAS  Google Scholar 

  • Thorborg P, Malmqvist LA, Lund N (1988) Surface oxygen pressure distributions in rabbit skeletal muscle: dependence on arterial PO2. Microcirc Endothel Lymphatics 4:169–192.

    CAS  Google Scholar 

  • Gutierrez G, Lund N, Palizas F (1991) Rabbit skeletal muscle PO2 during hypodynamic sep-sis. Chest 99:224–229.

    Article  PubMed  CAS  Google Scholar 

  • Curtis SE, Cain SM (1992) Regional and systemic oxygen delivery/uptake relations and lac-tate flux in hyperdynamic, endotoxin-treated dogs. Am Rev Respir Dis 145:348–354.

    PubMed  CAS  Google Scholar 

  • Dodd SL, King CE, Cain SM (1987) Responses of innervated and denervated gut to whole-body hypoxia. J Appi Physiol 62:651–657.

    CAS  Google Scholar 

  • Curtis SE, Cain SM (1992b) Systemic and regional O2 delivery and uptake in bled dogs given hypertonic saline, whole blood, or dextran. Am J Physiol 262: H778–H786.

    PubMed  CAS  Google Scholar 

  • Montgomery A, Hartmann M, Jonsson K, Haglund UH (1989) Intramucosal pH measure¬ment with tonometer for detecting gastrointestinal ischemia in porcine hemorrhagic shock. Circ Shock 29:319–327.

    PubMed  CAS  Google Scholar 

  • Drazenovic R, Samsel RW, Wylam ME, Doerschuk CM, Schumacker PT (1992) Regulation of perfused capillary density in canine intestinal mucosa during endotoxemia. J Appi Physiol 72:259–265.

    Article  CAS  Google Scholar 

  • Whithworth PW, Cryer HM, Garrison RN, Baumgarten TE, Harris PD (1989) Hypoperfusion of the intestinal microcirculation without decreased cardiac output during live Escherichia coli sepsis in rats. Circ Shock 27:111–122.

    Google Scholar 

  • Schumacker PT, Cain SM (1987) The concept of a critical oxygen delivery. Intensive Care Med 13:223–229.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vallet, B. (1997). Pathophysiology of VO2/DO2 in Sepsis. In: Pinsky, M.R. (eds) Applied Cardiovascular Physiology. Update in Intensive Care and Emergency Medicine, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60696-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60696-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64512-9

  • Online ISBN: 978-3-642-60696-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics