Skip to main content

Rationale for Hemodynamic Monitoring

  • Chapter
  • 218 Accesses

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 28))

Abstract

While the history of formal hemodynamic monitoring is relatively brief [2], an appreciation for the qualitative aspects of monitoring dates back to ancient times [1]. In one sense, hemodynamic monitoring is a natural extension of the physical examination, quantifying the various aspects of the physical assessment. For instance, methods to assess central venous pressure by examination of the neck veins were developed long before the routine use of central venous catheters. However, in the modern ICU’s of today, hemodynamic monitoring is not used merely as a tool for the validation of the physical exam or for the periodic detailed assessment, but instead, on a continuous basis. Indeed, it is this feature that accounts for much of the utility of hemodynamic monitoring.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellamy RF, Maningas PA, Wenger BA (1986) Current Shock Models and Clinical Correlations. Ann Emerg Med 15:139–1395.

    Google Scholar 

  2. Nelson LD, Rutherford EJ (1993) Principles of hemodynamic monitoring. In: Pinsky MR, Dhainaut J-F (eds) Pathophysiologic Foundations of Critical Care. Williams & Wilkins, Baltimore, pp 3–22.

    Google Scholar 

  3. Polk SL, Roizen MF (1990) Cost-benefit analysis in monitoring. In: Blitt CD (ed) Monitoring in Anesthesia and Critical Care Medicine. Churchill Livingstone, New York, pp 65–77.

    Google Scholar 

  4. Connors AF Jr, McCaffree DR, Gray BA (1983) Evaluation of right-heart catheterization in the critically ill patient without acute myocardial infarction. N Engl J Med 308:263–271.

    Article  PubMed  Google Scholar 

  5. Moore CH, Lombardo TR, Allums JA, et al. (1978) Left main coronary artery stenosis: hemodynamic monitoring to reduce mortality. Ann Thorac Surg 26:445–452.

    Article  PubMed  CAS  Google Scholar 

  6. Shoemaker WC, Montgomery ES, Kaplan E, et al. (1973) Physiologic patterns in surviving and non-surviving shock patients. Arch Surg 106:630–639.

    PubMed  CAS  Google Scholar 

  7. Hopkins JA, Shoemaker WC, Chang PC, et al. (1983) Clinical trial of an emergency resuscitation algorithm. Crit Care Med 22:621–628.

    Article  Google Scholar 

  8. Shoemaker WC (1987) The role of oxygen transport patterns in the pathophysiology, prediction of outcome and therapy of shock. In: Bryan-Brown CW, Ayres SM (eds) New Horizons II: Oxygen Transport and Utilization. Fullerton, Society of Critical Care Medicine, p 65.

    Google Scholar 

  9. Hinds C, Watson D (1995) Manipulating hemodynamics and oxygen transport in critically ill patients. NEJM 333:1074–1075.

    Article  PubMed  CAS  Google Scholar 

  10. Pinsky MR, Matuschak GM (1990) Multiple systems organ failure: a unifying hypothesis. J Crit Care 5:108–114.

    Article  Google Scholar 

  11. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94: 1176–1186.

    Article  PubMed  CAS  Google Scholar 

  12. Tuchsmidt J, Fired J, Astriz M, Rackow E (1992) Evaluation of cardiac output and oxygen delivery improves outcome in septic shock. Chest 102:216–220.

    Article  Google Scholar 

  13. Boyd O, Grounds RM, Bennett ED (1993) A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 270:2699–2707.

    Article  PubMed  CAS  Google Scholar 

  14. Hayes MA, Timmins AC, Yau EHS, et al. (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330:1717–1722.

    Article  PubMed  CAS  Google Scholar 

  15. Gattinoni L, Brazzi L, Pelosi P, et al. (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 333:1025–1032.

    Article  PubMed  CAS  Google Scholar 

  16. Robin ED (1983) A critical look at critical care. Crit Care Med 11:144–152.

    Article  PubMed  CAS  Google Scholar 

  17. Meador CK (1965) The art and science of non-disease. N Engl J Med 272:92–101.

    Article  PubMed  CAS  Google Scholar 

  18. Kleinman B (1989) Understanding natural frequency and damping and how they relate to the measurement of blood pressure. J Clin Monit 5:137–147.

    Article  PubMed  CAS  Google Scholar 

  19. Bellomo R, Pinsky MR (1996) Invasive monitoring. In: Tinker J, Browne D, Sibbald W (eds) Critical Care - Standards Audit and Ethics. Arnold Publishing, pp 82–104.

    Google Scholar 

  20. Bryan-Brown CW (1992) Pathway to the present: a personal view of critical care. In: Civetta JM, Taylor RW, Kirby RR (eds) Critical Care. JB Lippincott, Philadelphia, pp 5–12.

    Google Scholar 

  21. Pinsky MR (1994) Beyond global 02 supply-demand relations: in search of measures of dys-oxia. Intensive Care Med 20:1–3.

    Article  PubMed  CAS  Google Scholar 

  22. Cain S (1978) Effects of time and vasoconstrictor tone on oxygen extraction during hypoxic hypoxia. J Appl Physiol 45:219–224.

    PubMed  CAS  Google Scholar 

  23. Kramer DJ, Stein KL, Schlichtig RA, Armendariz E, Lanier A, Pinsky MR (1989) Pressure flow relationships in the superior mesenteric and hepatic arteries in endotoxic shock. Chest 96: 2933–2939.

    Google Scholar 

  24. Berdenheur H, Schrader J (1986) Supply-to-demand ratio for oxygen determines formation of adenosine by the heart. Am J Physiol 250: H162–H173.

    Google Scholar 

  25. Shoemaker WC, Kram HB, Appel PL, Fleming AW (1990) The efficacy of central venous and pulmonary artery catheters and therapy based upon them in reducing mortality and morbidity. Arch Surg 125:1332–1338.

    PubMed  CAS  Google Scholar 

  26. Schlichtig R, Bowles SA (1994) Distinguishing between aerobic and anaerobic appearance of dissolved C02 in intestine during low flow. J Appi Physiol 76:2443–2451.

    CAS  Google Scholar 

  27. Kellum JA, Rico P, Pinsky MR (1996) Accuracy of pHi and delta PC02 for detecting gut hypoperfusion in acute canine endo toxemia. Am J Respir Crit Care Med 153: A659.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kellum, J.A. (1997). Rationale for Hemodynamic Monitoring. In: Pinsky, M.R. (eds) Applied Cardiovascular Physiology. Update in Intensive Care and Emergency Medicine, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60696-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60696-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64512-9

  • Online ISBN: 978-3-642-60696-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics