Skip to main content

The Effect of High Pressure on Transcription and on the Structure and Activity of E. coli RNA Polymerase

  • Chapter
Mechanisms of Transcription

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 11))

  • 500 Accesses

Abstract

Intermolecular interactions play a vital role in the numerous steps of prokaryotic and eukaryotic transcription. Multiprotein complexes assemble at promoters and enhancer regions of the DNA, and proteins bound to distal as well as to adjacent regions of DNA can interact with each other (Kerppola and Kane 1991; Rippe et al. 1995). Ternary complexes appear to undergo cycles of protein conformational changes during the elongation phase of transcription by Escherichia coli RNA polymerase, and some of these structural rearrangements are sequence-dependent (Krummel and Chamberlin 1992; Nudler et al. 1994; Wang et al. 1995; Zaychikov et al. 1995). The termination (and antitermination) of transcription also involves the interaction of protein factors and newly synthesized RNA with DNA (Richardson 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arndt KM, Chamberlin MJ (1990) RNA chain elongation by Escherichia coli RNA polymerase. Factors affecting the stability of elongating ternary complexes. J Mol Biol 213:79–108

    Article  PubMed  CAS  Google Scholar 

  • Asano T, Le Noble WJ (1978) Activation and reaction volumes in solution. Chem Rev 78:407–489

    Article  CAS  Google Scholar 

  • Bartlett D, Wright M, Yayanos AA, Silverman M (1989) Isolation of a gene regulated by hydrostatic pressure in a deep-sea bacterium. Nature 342:572–574

    Article  PubMed  CAS  Google Scholar 

  • Bartlett DH, Chi E, Wright ME (1993) Sequence of the ompH gene from the deep-se bacterium Photobacterium SS9. Gene 131:125–128

    Article  PubMed  CAS  Google Scholar 

  • Bartlett DH, Kato C, Horikoshi K (1995) High pressure influences on gene and protein expression. Res Microbiol 146:697–706

    Article  PubMed  CAS  Google Scholar 

  • Beabealashvilly RS, Savotchkina LP, (1973) RNA polymerase-DNA complexes. IV. Influences of the ionic strength on the integrity of the complexes. Biochim Biophys Acta 294:434–441

    PubMed  CAS  Google Scholar 

  • Chamberlin MJ (1992) New models for the mechanism of transcription elongation and its regulation. Harvey Lect 88:1–21

    PubMed  Google Scholar 

  • Chamberlin MJ, Nierman WC, Wiggs J, Neff N (1979) A quantitative assay for bacterial RNA polymerases. J Biol Chem 254:10061–10069

    PubMed  CAS  Google Scholar 

  • Chi E, Bartlett DH, (1993) Use of a reporter gene to follow high-pressure signal transduction in the deep-sea bacterium Photobacterium sp. strain SS9. J Bacteriol 175:7533–7540

    PubMed  CAS  Google Scholar 

  • Chong PL, Wong PT (1993) Interactions of Laurdan with phosphatidylcholine liposomes: a high pressure FTIR study. Biochim Biophys Acta 1149:260–266

    Article  PubMed  CAS  Google Scholar 

  • Cioni P, Strambini GB (1994) Pressure effects on protein flexibility in monomeric proteins. J Mol Biol 242:291–301

    Article  PubMed  CAS  Google Scholar 

  • Erie DA, Hajiseyedjavadi O, Young MC, von Hippel PH, (1993) Multiple RNA polymerase conformations and GreA: control of the fidelity of transcription. Science 262:867–873

    Article  PubMed  CAS  Google Scholar 

  • Erijman L, Clegg RM (1995) Heterogeneity of E. coli RNA polymerase revealed by high pressure. J Mol Biol 253:259–265

    Article  PubMed  CAS  Google Scholar 

  • Erijman L, Clegg RM, (1996) High pressure electrophoresis in narrow bore glass tubes. One and two-dimensional separations of protein subunits. Rev Sci Instrum 67:813–817

    Article  CAS  Google Scholar 

  • Fukuda R, Ishihama A (1974) Subunits of RNA polymerase in function and structure; maturation in vitro of core enzyme from Escherichia coli. J Mol Biol 87:523–540

    Article  Google Scholar 

  • Gross M, Jaenicke R (1990) Pressure-induced dissociation of tight couple ribosomes. FEBS Lett 267:239–241

    Article  PubMed  CAS  Google Scholar 

  • Gross M, Jaenicke R (1994) Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem 221:617–630

    Article  PubMed  CAS  Google Scholar 

  • Gross M, Lehle K, Jaenicke R, Nierhaus KH, (1993) Pressure-induced dissociation of ribosomes and elongation cycle intermediates. Stabilizing conditions and identification of the most sensitive functional state. Eur J Biochem 218:463–468

    Article  PubMed  CAS  Google Scholar 

  • Gross M, Kosmowsky IJ, Lorenz R, Molitoris HP, Jaenicke R, (1994) Response of bacteria and fungi to high-pressure stress as investigated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 15:1559–1565

    Article  PubMed  CAS  Google Scholar 

  • Hawley SA, (1973) Electrophoretic separation of conformational states of α-chymotrypsinogen A at high pressures. Biochim Biophys Acta 317:236–239

    PubMed  CAS  Google Scholar 

  • Heremans K (1982) High pressure effects on proteins and other biomolecules. Annu Rev Biophys Bioeng 11:1–21

    Article  PubMed  CAS  Google Scholar 

  • Jonas J, Jonas A, (1994) High pressure NMR spectroscopy of proteins and membranes. Annu Rev Biophys Biomol Struct 23:287–318

    Article  PubMed  CAS  Google Scholar 

  • Kato C, Sato T, Smorawinska M, Horikoshi K (1994) High pressure conditions stimulate expression of chloramphenicol acetyltransferase regulated by the lac promoter in Escherichia coli. FEMS Microbiol Lett 122:91–96

    Article  PubMed  CAS  Google Scholar 

  • Kato C, Smorawinska M, Sato T, Horikoshi K, (1996) Analysis of a pressure-regulated operon from the barophilic bacterium strain db6705. Biosci Biotech Biochem 60:166–168

    Article  CAS  Google Scholar 

  • Kerppola TK, Kane CM (1991) RNA polymerase: regulation of transcript elongation and termination. FASEB J 5:2833–2842

    PubMed  CAS  Google Scholar 

  • Krummel B, Chamberlin MJ (1992) Structural analysis of ternary complexes of Escherichia coli RNA polymerase. Deoxyribonuclease I footprinting of defined complexes. J Mol Biol 225:239–250

    Article  PubMed  CAS  Google Scholar 

  • Landau JV, (1966) Protein and nucleic acid synthesis in Escherichia coli: pressure and temperature effects. Science 153:1273–1274

    Article  PubMed  CAS  Google Scholar 

  • Landau JV, (1967) Induction, transcription and translation in Escherichia coli: a hydrostatic pressure study. Biochim Biophys Acta 149:506–512

    PubMed  CAS  Google Scholar 

  • Liu B, Alberts BM (1995) Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science 267:1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Wong ML, Alberts B (1994) A transcribing RNA polymerase molecule survives DNA replication without aborting its growing RNA chain. Proc Natl Acad Sci USA 91:10660–10664

    Article  PubMed  CAS  Google Scholar 

  • Low PS, Somero GN (1975) Activation volumes in enzymic catalysis: Their sources and modification by low-molecular-weight solutes. Proc Natl Acad Sci USA 72:3014–3018

    Article  PubMed  CAS  Google Scholar 

  • Markovtsov V, Mustaev A, Goldfarb A (1996) Protein-RNA interactions in the active center of the transcription elongation complex. Proc Natl Acad Sci USA 93:3221–3226

    Article  PubMed  CAS  Google Scholar 

  • Marquis RE, Keller DM (1975) Enzymatic adaptation by bacteria under pressure. J Bacteriol 122:575–584

    PubMed  CAS  Google Scholar 

  • Nudler E, Goldfarb A, Kashlev M (1994) Discontinuous mechanism of transcription elongation. Science 265:793–796

    Article  PubMed  CAS  Google Scholar 

  • Pope DH, Connors NT, Landau JV (1975) Stability of Escherichia coli polysomes at high hydrostatic pressure. J Bacteriol 121:753–758

    PubMed  CAS  Google Scholar 

  • Richardson JP (1966) The binding of RNA polymerase to DNA. J Mol Biol 21:83–114

    Article  Google Scholar 

  • Richardson JP (1993) Transcription termination. CRC Crit Rev Biochem Mol Biol 28:1–30

    Article  CAS  Google Scholar 

  • Rippe K, von Hippel PH, Langowski J (1995) Action at a distance — DNA-looping and initiation of transcription. TIBS 20:500–506

    PubMed  CAS  Google Scholar 

  • Roe JH, Burgess RR, Record M, Jr, (1985) Temperature dependence of the rate constants of the Escherichia coli RNA polymerase-lambda PR promoter interaction. Assignment of the kinetic steps corresponding to protein conformational change and DNA opening. J Mol Biol 184:441–453

    Article  PubMed  CAS  Google Scholar 

  • Royer CA, Weber G, Daly TJ, Matthews KS, (1986) Dissociation of the lactose repressor protein tetramer using high hydrostatic pressure. Biochemistry 25:8308–8315

    Article  PubMed  CAS  Google Scholar 

  • Royer CA, Chakerian AE, Matthews KS (1990) Macromolecular binding equilibria in the lac repressor system: studies using high-pressure fluorescence spectroscopy. Biochemistry 29:4959–4966

    Article  PubMed  CAS  Google Scholar 

  • Royer CA, Hinck AP, Loh SN, Prehoda KE, Peng X, Jonas J, Markley JL, (1993) Effects of amino acid substitutions on the pressure denaturation of staphylococcal nuclease as monitored by fluorescence and nuclear magnetic resonance spectroscopy. Biochemistry 32:5222–5232

    Article  PubMed  CAS  Google Scholar 

  • Samarasinghe SD, Campbell DM, Jonas A, Jonas J, (1992) High resolution NMR study of the pressure-induced unfolding of lysozyme. Biochemistry 31:7773–7778

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Nakamura Y, Nakashima KK, Kato C, Horikoshi K, (1996) High pressure represses expression of the malB operon in Escherichia coli. FEMS Microbiol Lett 135:111–116

    Article  PubMed  CAS  Google Scholar 

  • Schulz È, Ludemann HD, Jaenicke R (1976) High pressure equilibrium studies on the dissociation-association of E. coli ribosomes. FEBS Lett 64:40–43

    Article  PubMed  CAS  Google Scholar 

  • Silva JL, Weber G (1993) Pressure stability of proteins. Annu Rev Phys Chem 44:89–113

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Meier TI, Chan CL, Feng G, Lee DN, Landick R (1995) Discontinuous movements of DNA and RNA in RNA polymerase accompany formation of a paused transcription complex. Cell 81:341–350

    Article  PubMed  CAS  Google Scholar 

  • Weber G, Drickamer HG (1983) The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys 16:89–112

    Article  PubMed  CAS  Google Scholar 

  • Wilson KS, von Hippie PH, (1994) Stability of Escherichia coli transcription complexes near an intrinsic terminator. J Mol Biol 244:36–51

    Article  PubMed  CAS  Google Scholar 

  • Wong PT, Siminovitch DJ, Mantsch HH, (1988) Structure and properties of model membranes: new knowledge from high pressure vibrational spectroscopy. Biochim Biophys Acta 947:139–171

    PubMed  CAS  Google Scholar 

  • Yager TD, von Hippel PH, (1987) Transcript elongation and termination in Escherichia coli. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium, vol 2. American Society for Microbiology, Washington, DC, pp 1241–1275

    Google Scholar 

  • Yarbrough LR, Schlageck JG, Baughman M (1979) Synthesis and properties of fluorescent nucleotide substrates for DNA-dependent RNA polymerases. J Biol Chem 254:12069–12073

    PubMed  CAS  Google Scholar 

  • Yayanos A A, Pollard EC, (1969) A study of the effects of hydrostatic pressure on macromolecular synthesis in Escherichia coli. Biophys J 9:1464–1482

    Article  PubMed  CAS  Google Scholar 

  • Zaychikov E, Denissova L, Heumann H, (1995) Translocation of the Escherichia coli transcription complex observed in the registers 11 to 20: “jumping” of RNA polymerase and asymmetric expansion and contraction of the “transcription bubble”. Proc Natl Acad Sci USA 92:1739–1743

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Erijman, L., Clegg, R.M. (1997). The Effect of High Pressure on Transcription and on the Structure and Activity of E. coli RNA Polymerase. In: Eckstein, F., Lilley, D.M.J. (eds) Mechanisms of Transcription. Nucleic Acids and Molecular Biology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60691-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60691-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64509-9

  • Online ISBN: 978-3-642-60691-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics